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Abstract
This paper addresses the visual odometry problem from a machine learning perspective. Optical flow information
from a single camera is used as input for a multiple-output Gaussian process (MOGP) framework, that estimates
linear and angular camera velocities. This approach has several benefits. (1) It substitutes the need for conventional
camera calibration, by introducing a semi-parametric model that is able to capture nuances that a strictly parametric
geometric model struggles with. (2) It is able to recover absolute scale if a range sensor (e.g. a laser scanner) is used
for ground-truth, provided that training and testing data share a certain similarity. (3) It is naturally able to provide
measurement uncertainties. We extend the standard MOGP framework to include the ability to infer joint estimates (full
covariance matrices) for both translation and rotation, taking advantage of the fact that all estimates are correlated since
they are derived from the same vehicle. We also modify the common zero mean assumption of a Gaussian process to
accommodate a standard geometric model of the camera, thus providing an initial estimate that is then further refined by
the non-parametric model. Both Gaussian process hyperparameters and camera parameters are trained simultaneously,
so there is still no need for traditional camera calibration, although if these values are known they can be used to speed
up training. This approach has been tested in a wide variety of situations, both 2D in urban and off-road environments
(two degrees of freedom) and 3D with unmanned aerial vehicles (six degrees of freedom), with results that are comparable
to standard state-of-the-art visual odometry algorithms and even more traditional methods, such as wheel encoders and
laser-based Iterative Closest Point. We also test its limits to generalize over environment changes by varying training and
testing conditions independently, and also by changing cameras between training and testing.
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1. Introduction

Accurate localization is a fundamental capability in
autonomous navigation, where a vehicle needs to be con-
stantly aware of its own pose to perform tasks such as map-
ping and path planning. There are basically two types of
sensors that can be used to provide localization estimates:
internal and external. Internal sensors (i.e. wheel encoders
and inertial measurement units [IMUs]) work isolated from
the external world and provide incremental position estima-
tions, based on vehicle velocity and/or acceleration. This
arrangement works well in small-scale experiments, but the
estimates obtained have a tendency to drift over time due
to error accumulation. External sensors (i.e. GPS, range
finders and cameras) interact in one way or another with
the environment around the vehicle, collecting information
that can provide both incremental and absolute localization
estimates. These absolute localization estimates are used to

eliminate accumulated error, creating an upper bound on
navigational uncertainty even after long periods. However,
external sensors are sensitive to environment conditions that
limit their applicability (GPS does not work indoors, range
finders are constrained by object reflectability and their own
resolution, cameras need adequate luminosity and sufficient
texture on the surrounding environment).

Even so, the ability to eliminate accumulated error and
provide precise localization estimations even after long
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periods of navigation has made external sensors increas-
ingly valuable in motion estimation over the last decades,
both independently and in conjunction with other sensors.
Of all external sensors, cameras are cheap, compact, with
low power consumption, and have several other advantages
that can lead to more robust and reliable results. Visual
information is insensitive to terrain irregularities, is not
restricted to any particular locomotion method, and when
used for motion estimation are capable of providing pre-
dictions comparable in accuracy to most commercial IMUs
(Howard, 2008). Also, recent increases in computational
power allow real-time visual motion estimation on stan-
dard processors, and the information provided can be read-
ily used in a wide range of other applications, such as
object recognition (Lowe, 2004), object tracking (Tomasi
and Tomasi, 1994) and map building (Davison, 2003),
without the need for cross-calibration.

The process of estimating vehicle pose by analyzing
its associated camera images is known as visual odom-
etry, and is fundamentally composed of two stages. Ini-
tially, information from consecutive frames is extracted
and correlated, to establish correspondences between fea-
tures in overlapping areas that represent vehicle motion.
If the environment is assumed static, any optical flow
detected between frames is due to the camera’s own motion
and can be used to infer relative rotation and translation.
Most visual odometry algorithms address this problem geo-
metrically (Hartley and Zisserman, 2004), using a cali-
brated camera model to minimize the reprojection of 3D
points triangulated from matched features. However, cal-
ibrating a system can be a daunting process, and there
is no guarantee that these parameters will not vary over
time, due to vibration, mechanical shocks or changes in
temperature.

We propose here an alternative approach, where a Gaus-
sian process (GP) (Rasmussen and Williams, 2006), a pow-
erful non-parametric Bayesian inference technique, is used
as a regression tool to learn the underlying function that
maps optical flow information directly into camera motion.
This is possible by exploring the optical flow pattern over
different portions of the image, and using structure simi-
larities to infer camera motion from a static environment.
Training data is obtained from a different and independent
sensor, and a likelihood function is optimized to fit this
data, where a covariance function quantifies the relationship
between points. Once the training is completed, the result-
ing model can be used to estimate translation and rotation
between frames from visual information alone. The benefits
of this approach are three-fold. (1) It substitutes the need
for conventional camera calibration, by introducing a more
flexible semi-parametric model that is capable of learning
a much wider range of transformation functions from opti-
cal flow to vehicle motion. (2) It is able to recover absolute
scale from a monocular configuration, by exploring struc-
ture similarity between images. (3) It naturally provides

uncertainty estimates during the inference process. These
benefits are obtained under the assumption that training and
testing datasets share a certain similarity in optical flow dis-
tribution, and as this similarity decreases (i.e. the vehicle,
camera or environment changes) so does the overall perfor-
mance. A series of tests is conducted to show the impact of
each of these changes in the final results.

We also propose several alterations to the standard GP
framework, in order to take advantage of the structure of
the visual odometry problem and improve results. Vehi-
cle navigation has intrinsically multiple degrees of freedom
(linear and angular velocities for each unconstrained axis),
and since these velocities are subject to the same vehicle
constraints it is natural to assume that they share some
dependencies. We use a multiple-output Gaussian process
(MOGP) to infer all velocities simultaneously (Boyle and
Frean, 2005), incorporating these dependencies into the cal-
culations and using them to eliminate ambiguity and gaps
in the training data. We also extend the standard MOGP
derivation to allow for joint estimation of all tasks (an exten-
sion we call coupled GP [CGP]) (Guizilini and Ramos,
2010), providing the means for a full covariance matrix
recovery that can then be used in data fusion and incorpo-
ration into filtering techniques. In addition, we propose a
novel temporal dependency extension to the CGP frame-
work, where the outputs from one timestep are used as
inputs in the next one, a strategy that has been proved
valuable in situations where visual information is poor or
ambiguous (Guizilini and Ramos, 2012). Finally, we pro-
pose a hybrid semi-parametric extension to the CGP frame-
work, where a traditional geometric camera model is used
to obtain an initial estimate of vehicle motion that is fur-
ther refined by the non-parametric model obtained during
training. The geometric model is used as the mean function
for the CGP, and becomes more prominent as data obtained
during navigation deviates from training data.

The rest of this paper is divided as follows. Section 2
provides a brief overview on visual odometry algorithms
and multi-task learning methods, with an emphasis on GPs
and how they have so far related to visual systems. Section
3 introduces our solution to the visual odometry problem,
highlighting each stage of the algorithm from the initial
image input to the final vehicle motion estimation out-
put. Section 4 recapitulates the principles and fundamental
equations behind GPs, moves on to MOGPs and then intro-
duces the extensions proposed in this paper (CGPs, tem-
poral dependencies and semi-parametric CGPs). Section 5
describes the mechanism used for optical flow extraction
and parametrization, in such a way that it can be employed
in machine learning inference. In Section 6 we present
and discuss results obtained with the proposed method-
ology in both 2D and 3D scenarios, providing compar-
isons with other motion estimation algorithms. Finally, Sec-
tion 7 concludes the paper and discusses future research
directions.
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2. Related work

The use of visual sensors to guide an autonomous vehi-
cle can be traced back at least to 1976, with Moravec
and Gennery (1976) using feature tracking for course cor-
rection in the Stanford AI Lab Cart. The functionality of
these sensors was later extended to include egomotion esti-
mation (Moravec, 1980), by tracking a set of assumed
stationary feature points over a sequence of frames and
calculating their relative shift. Over the past few decades
similar approaches to visual odometry have been explored
extensively and are becoming more and more popular as
computational power increases, with applications in areas
such as autonomous aircrafts (Kelly and Sukhatme, 2007;
Huang et al., 2011), underwater vehicles (Corke et al., 2007;
Botelho et al., 2009), space exploration (Cheng et al., 2005)
and indoor/outdoor ground terrains (Campbell et al., 2004;
Nister et al., 2006; Agrawal and Konolige, 2007; Howard,
2008; Scaramuzza and Siegwart, 2008; Tardif et al., 2008;
Scaramuzza et al., 2009). Several modifications to the orig-
inal scheme have also been proposed in an attempt to
improve both quality and applicability of solutions: the
use of omnidirectional cameras (Scaramuzza and Siegwart,
2008; Tardif et al., 2008), robust feature extraction and
matching (Sunderhauf et al., 2005; Nister et al., 2006), data
fusion with other sensors (Agrawal and Konolige, 2007;
Kelly et al., 2007) and extension to a simultaneous local-
ization and mapping (SLAM) framework (Se et al., 2001;
Davison, 2003; Lemaire et al., 2007).

Visual odometry algorithms can be broadly divided into
two categories: stereo and monocular configurations. Stereo
configurations (Moravec, 1980; Zhu et al., 2006; Kelly and
Sukhatme, 2007; Howard, 2008) use a multi-camera array
to capture several images simultaneously, from different
vantage points. If the baseline (distance between cameras) is
known, it is possible to project detected features into the 3D
space, and by tracking them over time to estimate vehicle
motion. Monocular configurations (Scaramuzza and Sieg-
wart, 2008; Tardif et al., 2008; Scaramuzza et al., 2009)
use a single camera, which is essentially a bearing-only
sensor. If a sequence of images taken at different loca-
tions is provided, the baseline between frames can be esti-
mated, a scenario commonly known as the structure-from-
motion (SFM) problem (Tomasi and Zhang, 1995). One
well-known limitation of monocular odometry is the inabil-
ity to recover absolute scale (Scaramuzza et al., 2009) from
a single image, due to the parallax effect (an object could be
far away and moving fast, or close by and moving slowly).
Both approaches, stereo and monocular, can benefit from
advances in feature extraction and matching techniques,
such as the five-point and preemptive random sampling
consensus (RANSAC) (Nister et al., 2006) and local bundle
adjustment (Sunderhauf et al., 2005). The trade-off in reso-
lution for wider field that omnidirectional cameras provide
is also usually beneficial (Corke et al., 2004; Scaramuzza
and Siegwart, 2008; Tardif et al., 2008; Scaramuzza et al.,
2009), mostly because it allows detection of optical flow

in any direction. The incorporation of uncertainty measure-
ments to motion estimates allows fusion of visual odometry
data with other sensors, such as an IMU (Kelly et al., 2007)
or a low-cost GPS (Agrawal and Konolige, 2007), elimi-
nating residual errors and accounting for situations where
vision is not a reliable source of information (i.e. dark or
textureless areas).

All of these approaches to visual odometry, however,
are calibration-dependent, in the sense that the transforma-
tion from optical flow to vehicle motion is calculated using
a geometric model (Hartley and Zisserman, 2004). This
model is governed by the intrinsic parameters of the cam-
era, and any imprecision will introduce a bias in the final
estimation. Machine learning algorithms, on the other hand,
eliminate the need of a parametric model by introducing a
training dataset, which is used to optimize a cost function
that quantifies the relationship between different points in
the input space. The result is a non-parametric model that
is capable of mapping directly from optical flow to vehicle
motion, without the need of any prior knowledge of cam-
era system or environment structure. Although intuitive,
this approach has been scarcely used in visual odometry,
most notably by Roberts et al. (2008) where the authors
use a KNN-Learner voting method to estimate changes in
pose, with each learner taking as input the average of the
sparse optical flow in a grid-divided image. A similar idea
is explored by Roberts et al. (2009), where a constant pixel
depth is assumed and the expectation–maximization (EM)
algorithm (Dellaert, 2002), in conjunction with an exten-
sion to PPCA (Tipping and Bishop, 1999), is used to learn
a linear mapping between incremental motion and optical
flow.

A machine learning technique that has been used with
great success over the last few years in various areas of
mobile robotics, such as mapping (O’Callaghan et al.,
2009), terrain modelling (Vasudevan et al., 2009) and
dynamic systems learning (Chai et al., 2008), are the GPs.
A GP is a non-parametric regression and classification tool
within the Bayesian statistical framework, where any finite
linear combination of samples will be normally distributed.
The standard derivation of a GP assumes one single output
variable (task), using independent models to deal with mul-
tiple outputs when necessary. This approach, however, is
detrimental when these variables are correlated (i.e. visual
odometry, due to vehicle motion constraints), since knowl-
edge of one could lead to a better estimation of all of the
others. An alternative is the computation of a single covari-
ance matrix containing observations from all tasks (Cressie,
1993), however in this scenario each inference is still con-
ducted independently. A critical aspect of multi-task estima-
tion is the definition of a valid positive-definite multi-task
covariance function, that captures the underlying dependen-
cies between each output variable. Boyle and Frean (2005)
presented a convolutional method to define valid multi-task
stationary covariance functions and Guizilini and Ramos
(2010) presented and discussed an extension to multi-task
GPs where all outputs are calculated simultaneously.
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3. Algorithm overview

The algorithm proposed in this paper receives as input
two images, obtained from a single non-calibrated cam-
era, and returns as output the motion estimate between
frames (including absolute scale), along with a full covari-
ance matrix of uncertainties. It is divided into two stages,
one concerning the parametrization of visual information
into an input vector for the GP framework (optical flow
parametrization), and one concerning the estimation of
vehicle motion from this visual information alone (GP esti-
mation). A diagram of all steps in each stage of the algo-
rithm is presented in Figure 1, and the next few paragraphs
are dedicated to briefly describing their function in the
global scheme of the algorithm. An in-depth and more the-
oretical explanation of each stage is conducted in the next
two sections.

Initially, the two input images are processed and each
one produces a feature set, FTR1 and FTR2. These two
feature sets are then matched to generate the matching set
MTC12, which describe the sparse optical flow information
between frames. Since this matching set will most cer-
tainly contain outliers, due to wrong matches and dynamic
objects, the fundamental matrix F12 is obtained using
RANSAC, and the resulting inlier set INL12 is then trans-
formed into a vector X12 that will serve as input for the GP
framework.

Simultaneously, F12 and INL12 are also used to gener-
ate an initial motion estimate, based on a standard SFM
algorithm. The geometric model that calculates this ini-
tial SFM estimate requires a calibrated camera, and its
parameters are obtained from training data XTRN and the
corresponding ground-truth YTRN prior to the beginning of
navigation, along with the GP hyperparameters. It is impor-
tant to note that these are not equivalent to the camera’s
intrinsic parameters, as the geometric model in this
framework provides only an initial guess for vehi-
cle motion, that is further refined by the GP non-
parametric inference process to generate the final esti-
mate. The result is a semi-parametric approach to visual
odometry that maps X12 directly into Y12, which is
the vehicle motion between frames. The full covari-
ance matrix �12 is also obtained, quantifying not only
the uncertainties between each component of Y12 (two
in 2D non-holonomic navigation and six in 3D navi-
gation) but also the cross-dependencies between them.
Another way of viewing the proposed algorithm is as a
novel calibration methodology in which the model being
optimized is the CGP framework with the geometric model
incorporated as the mean function (MCGP) itself, and the
‘calibration parameters’ are both the camera’s intrinsic
parameters and the GP hyperparameters. This is a much
more powerful modelling tool, because it is capable of cap-
turing nuances in the training data that a strictly geometric
approach struggles with, due to limitations in the chosen
model or imprecisions in the data capture process.

4. Gaussian processes

In the machine learning context, the estimation of vehicle
motion from sensor information can be seen as a super-
vised regression problem: the process of mapping an input
x to an output y = f ( x)+ ε using a training dataset
� = {xn, yn}Nn=1, where ε = N ( 0, σ 2) represents a Gaus-
sian noise with variance σ 2. In the specific case of visual
systems, the vector xn ∈ �D contains optical flow informa-
tion extracted from a pair of images and yn ∈ � contains
the corresponding vehicle motion information, obtained for
training purposes using a different and independent sensor.
A GP places a Gaussian prior over the space of functions
mapping inputs to outputs, using a positive-definite kernel
(or covariance function) k( xi, xj) that quantifies the rela-
tionship between points in the dataset. The parameters of
this covariance function (or hyperparameters) are optimized
based on a cost function that penalizes model complexity, as
a way to avoid over-fitting according to the Occam’s razor
principle (MacKsay, 2002).

4.1. GPs overview

GPs (Rasmussen and Williams, 2006) are a non-parametric
tool in the sense that they do not explicitly specify a func-
tional model between inputs or outputs. Instead, they use
information available in the training data � to quantify
the relationship between different points in the input space,
and then extrapolate this information to infer the output of
new data in a probabilistic fashion. A GP model is entirely
defined by a mean function m( x) and a covariance function
k( x, x′):

f ( x)∼ GP( m( x) , k( x, x′)) . (1)

If no prior knowledge of the underlying phenomenon
is known, it is possible to assume m( x)= 0 without
loss of generality by scaling the data appropriately. The
covariance function k( x, x′) is a positive-definite kernel
whose coefficients are optimized to maximize a certain cost
function (usually the marginal likelihood or leave-one-out
cross-validation). Inference for a single test point x∗, given
training inputs X = {xn}Nn=1 and outputs y = {yn}Nn=1,
involves the computation of the mean f ( x∗) = f ∗ and
variance V( f ∗), and is calculated as follows:

f ∗ = k( x∗, X )T [K( X , X )+σ 2
n I]−1y (2)

V( f ∗)= k( x∗, x∗)− k( x∗, X ) [K( X , X )+σ 2
n I]−1k( x∗, X ) .

(3)

Both equations arrive naturally by conditioning the joint
Gaussian distribution in Equation (1) on the observation x∗.
In Equations (2) and (3), σ 2

n quantifies the noise expected in
the observation y and K is the covariance matrix, with ele-
ments Kij calculated based on a covariance function k( x, x′).
A large number of covariance functions have been proposed
over the years as a way to capture dependencies between
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Optical Flow Parametrization 

Gaussian Process Estimation 

Fig. 1. Diagram of the proposed algorithm.

observations in kernel-based machines, and here we use the
neural network covariance function (Williams, 1998) due
to its non-stationary properties. The neural network covari-
ance function can be derived from a neural network with a
single hidden layer, a bias term and H → ∞ hidden units.
If the hidden weights are assumed to be Gaussian distribu-
tions with zero mean and covariance � the neural network
covariance function can be defined (Neal, 1996) as

k( x, x′)= σ 2
f arcsin

⎛⎝ 2̃xT�x̃′√
( 1+ 2̃xT�x̃) ( 1+ 2x̃′T�x̃′)

⎞
⎠ ,

(4)

where x̃ = ( 1, x1, . . . , xD)T is an augmentation of x with the
constant value 1, and σ 2

f is a signal variance used to scale
the correlation between points determined by the neural
network covariance matrix � (here assumed diagonal with
D + 1 eigenvalues). It should be noted that this formula-
tion uses weighted dot products to quantify the relationship
between x and x′. As the dot product does not depend on
the origin of the coordinate system, this covariance function
is considered non-stationary, a valuable properties since
visual odometry estimators include angular quantities. The
expression also contains a sigmoid-like function, arcsin( x),
to model sharp transitions and nonlinearities.

4.2. CGPs

The standard GP derivation, as described in the previous
section, assumes a single output variable y (or task) for

each input variable x (Figure 2(a)). Traditional implemen-
tations usually rely on multiple independent GPs to deal
with multi-task scenarios, calculating each output sepa-
rately based on the same input information. This, however,
is not an ideal solution when these output variables are in
some way correlated, which is the case in visual odome-
try. In the 3D space, six parameters (degrees of freedom)
are necessary to describe vehicle motion: three for trans-
lation ( ẋ, ẏ, ż) and three for rotation (γ̇ , β̇ and α̇, in Euler
angles). Since these parameters are constrained by the vehi-
cle motion model, it is reasonable to assume that there will
be correlations between different degrees of freedom, which
if exploited could lead to better localization results.

The approach we describe here is based on the ideas
of MOGPs presented by Bonilla et al. (2008) and Boyle
and Frean (2005), where cross-correlations are explored
through the definition of a valid multi-task covariance
function (Figure 2(b)). First of all, the training dataset is
expanded to include all T tasks, assuming the form � =
{�t}Tt=1 where �t = {xn, y(t,n)}Nn=1.1 The covariance matrix
K is now defined as

K = Kf ⊗ Kx +�n, (5)

where ⊗ denotes the Kronecker product, Kf is a T × T
positive-definite matrix that models the amplitude of cor-
relations between each task (a multi-task analog to σ 2

f in
Equation (4)), and �n is a diagonal matrix with noise
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Fig. 2. Diagrams for (a) single-output GP and (b) MOGP (Boyle
and Frean, 2005). In (a), the output Y is the sum of two Gaussian
white noise processes (X and noise), one of which has been con-
volved with a kernel h. In (b), k is the multi-task kernel and X0
represents the correlated portion between the two tasks. If X0 is
forced to be zero the outputs Y1 and Y2 become independent and
the problem reverts to the single-output GP case described in (a).

values. Kx is a T × T block-matrix defined as

Kx =

⎡⎢⎣ K11 . . . K1T
...

. . .
...

KT1 . . . KTT

⎤⎥⎦ , (6)

where

Kij =

⎡⎢⎣ kij( x1, x1) . . . kij( x1, xN )
...

. . .
...

kij( xN , x1) . . . kij( xN , xN )

⎤⎥⎦ (7)

is the covariance matrix between tasks i and j, calculated
using the covariance function kij( x, x′). When i = j the
standard auto-covariance function (Equation (4)) is used
(with the only exception of σ 2

f which is removed, since in
this derivation this parameter is substituted by Kf ). When
i 
= j a cross-covariance function is used, derived (Hig-
don, 2002) from the definition of a neural network function
in which two smoothing kernels are convolved to obtain a
positive-definite function that correlates multiple outputs:

kij( x, x′)=
arcsin

(
2̃xT�x̃′√

(1+2̃xT�x̃)(1+2x̃′T�x̃′)

)
( |�i||�j|)4

√|�i +�j|
. (8)

In the above, x̃ = ( 1, x1, . . . , xD)T is again an augmen-
tation of x with the constant value 1, � = (�i(�i +
�j)−1�j) and �t is a diagonal matrix containing length
scale hyperparameters for task t.

4.2.1. Training stage During training, the CGP hyperpa-
rameters are optimized according to an objective function,
here chosen to be the log-marginal likelihood

ζ = ln p( y|X )= −1

2
log( |K|)−1

2
yTK−1y− N log( 2π )

(9)

due to its ability to balance between data fit and model com-
plexity (Hastie et al., 2001), thus minimizing the chances
of over-fitting. In the CGP framework proposed here, these
hyperparameters are the diagonal elements of �t for all
tasks (length scales), the coefficients of Kf (amplitudes of
correlation) and the diagonal elements of �n (noise lev-
els). The optimization is conducted using a combination of
stochastic maximization (simulated annealing) and gradient
descent algorithms to reduce the influence of initial condi-
tions. The stochastic maximization is necessary because of
the high number of hyperparameters, which creates a very
high-dimensional problem and increases the chance of local
maxima.

As usual, training and testing datasets should be obtained
under similar conditions, which in the visual odometry con-
text means using the same camera configuration to ensure
a similar optical flow distribution. Any deviance from this
would increase estimation uncertainty, since the obser-
vations obtained during navigation no longer correspond
to those used to derive the underlying model during the
training stage.

4.2.2. Inference stage The main contribution of CGPs over
the standard MOGP derivation, as described by Boyle and
Frean (2005), is the inference methodology. In the standard
MOGP derivation, even though the inference for each task
is obtained based on observations from all tasks, each one
is still calculated independently, so there is no estimation
of the cross-correlation terms. In other words, there is no
estimation of a full covariance matrix of uncertainty for
all tasks, each one is calculated as a single variable and
this information is not incorporated into the framework (the
resulting covariance matrix is assumed to be diagonal).

The CGP framework circumvents this limitation by intro-
ducing Ks as a T-column matrix containing the covariance
function values kij computed between the test point x∗ and
the training points for all tasks. For a test point x∗, the result-
ing mean vector f∗ and covariance matrix V( f∗) are now
defined as

f∗t = KT
s K−1y (10)

V( f∗t )= Kii( x∗, x∗)−KT
s K−1Ks, (11)

where

Ks =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kf
1,1k1,1( x∗, x1) . . . kf

T ,1kT ,1( x∗, x1)
...

. . .
...

kf
1,1k1,1( x∗, xN ) . . . kf

T ,1kT ,1( x∗, xN )
...

. . .
...

kf
1,T k1,T ( x∗, x1) . . . kf

T ,T kT ,T ( x∗, x1)
...

. . .
...

kf
1,T k1,T ( x∗, xN ) . . . kf

T ,T kT ,T ( x∗, xN )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

and
y = [y1,1 . . . y1,N . . . . . . yT ,1 . . . yT ,N ]. (13)
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Algorithm 1 Temporal dependency training.

Require: Training Datasets �1 and �2

Initial Hyperparameters θ
Ensure: Optimized Hyperparameters θ

1: likelihood_new←∞
2: repeat
3: likelihood_old = likelihood_new
4: for xi in �1 do
5: Z1

i← ( xi, y1
i−1)

6: end for
7: % Expectation step
8: for xi in �2 do
9: yCGP = CGP_INFER( Z1, xi, θ )

10: Z 2
i ←( xi, yCGP)

11: end for
12: % Maximization step
13: (likelihood_new, θ )= CGP_TRAIN( Z2, y2, θ )
14: �1� �2

15: until likelihood_new− likelihood_old = 0

4.3. Temporal dependency

In the previous section, we addressed the nature of cross-
correlations between tasks, which is a natural assumption
in visual odometry applications. This is however not the
only one, and here we explore another type of correla-
tion between tasks, which is temporal dependency. It is
safe to assume that a real vehicle will change its velocity
in a smooth manner, without discontinuities, and therefore
its motion estimates will also vary smoothly over time.
A first-order temporal dependency between tasks implies
that f∗k will be correlated to f∗k−1, with k being the timestep
between frames. This is modelled into the CGP framework
by incorporating f∗k−1 into the input vector xk . So, for a test
point with optical information x∗k the new augmented input
vector becomes

z∗k = {x∗k , f∗k−1}. (14)

The introduction of z as an augmented input vector
does not interfere with the CGP inference methodology,
other than requiring the corresponding augmentation of the
length-scale matrices �t to deal with the new input dimen-
sions that were incorporated. However, this new setup dis-
turbs the training methodology, because the complete set
of observations Z (the analog of X in Equation (9)) is not
readily available for evaluation, since it needs to be cal-
culated iteratively. It is possible to use ground-truth infor-
mation to complete Z, but this would generate a best-case
scenario that is not consistent with the inference stage,
where estimation errors tend to propagate over successive
iterations.

We propose here a new training methodology (described
step-by-step in Algorithm 1) that allows the incorpora-
tion of these estimation errors to the final non-parametric
model while maintaining a first-order temporal dependency
between tasks. First of all, the training dataset � is divided

into two subsets, �1 and �2, each composed of half the
training data. In the first subset, the ground-truth values of
y1 are used to complete Z1 directly (lines 4–6), in such a
manner that y1

k−1 completes Z1
k . The observation set Z1 is

then used to evaluate Z2 iteratively (lines 8–11), employing
the CGP inference methodology described previously.

Once the evaluation process is complete the estimated
Z2 is used to optimize the CGP hyperparameters (line 13),
according to a gradient-descent method and based on the
log-marginal likelihood function (Equation (9)). Once the
optimization is complete, the process is repeated with
inverted subsets (�2 is now used for inference and �1 for
training) until the cost function converges (lines 14 and 15).
It was determined empirically that the hyperparameters
assigned as length scales for f∗k−1 should be kept from
assuming too low values, since this would increase the sen-
sitivity to small errors in estimation. Also, the gradient-
descent method should be stopped after a few steps, in order
to avoid over-fitting in any particular iteration of the training
process.

This technique resembles the EM algorithm (Dellaert,
2002), in the sense that it alternates between computing
motion estimates from current hyperparameters (the expec-
tation step) and optimizing hyperparameter values using
current motion estimates (the maximization step). Also,
there is no guarantee of convergence to the global mini-
mum, so heuristic approaches for escaping local minima,
such as random restart or simulated annealing, should be
considered.

4.4. Semi-parametric coupled GPs

As stated previously, most GP implementations assume that
the mean value of the input information m( x) is zero, indi-
cating no prior knowledge of the underlying function to be
inferred from training data. However, this is not the case
in visual odometry, since it is also possible to obtain a
estimate of vehicle motion from well-established geomet-
ric models (Hartley and Zisserman, 2004). These models
depend strictly on camera calibration parameters, and are
commonly used as stand-alone solutions to the SFM prob-
lem (Sunderhauf et al., 2005; Nister et al., 2006; Howard,
2008).

We propose here the incorporation of this geometric
model into the CGP framework, creating a semi-parametric
approach to visual odometry that benefits from both the
SFM and machine learning strengths. This is achieved by
introducing the geometric model estimates as the new mean
vector m( x), which provides an initial estimate that is fur-
ther refined using the training dataset. This initial estimate
is obtained via triangulation, based on a calibrated camera
model and a set of matched features (the same ones used to
obtain the optical flow information that serves as input for
the CGP). If these matched features are assumed to be static
and their projections on both images are known (Figure 3),
it is possible to use this information to constrain camera
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Fig. 3. Diagram of the geometrical constraints used to estimate vehicle translation from OC to OC′ according to a matched feature M
and its projections m and m′ on each image.

motion between frames and obtain an estimate of transla-
tion and rotation. Even though there are several methods
that should produce better results (Howard, 2008; Love-
grove et al., 2011), we choose here to use the SFM values
directly as the mean vector to test our framework’s ability
to improve on generally poor estimations. It is natural to
assume that more involved geometric models should pro-
duce better results, which would then translate into better
estimations for the CGP framework to build upon.

The first step is the calculation of the fundamental matrix,
based on a set U of N > 7 matched features between con-
secutive frames I and I ′ (the particular techniques used to
obtain these matched features are detailed in Section 4).
If U = uN

n=1 and un =( u, v, 1)T contains the homoge-
neous image coordinates of each individual feature in a
particular frame, the fundamental matrix F is given by the
optimization of u in

u′TFu = 0. (15)

The fundamental matrix is a 3 × 3 matrix that relates
corresponding points in a pair of images. If u describes
the homogeneous coordinates of a feature in frame I , Fu
will describe a line (known as an epipolar line) in frame
I ′ on which this feature must lie (Figure 4). This relation,
however, does not take into account the metrics of camera
calibration, a crucial aspect in estimation using a geometric
model. The Essential matrix incorporates these metrics by
introducing a calibration matrix C defined as

C =
⎡⎣ lx s px

0 ly py

0 0 1

⎤⎦ , (16)

where lx and ly are focal lengths, s is the skew parameter
and px and py are the image center coordinates (collectively

known as the camera intrinsic parameters). If the fundamen-
tal matrix F and the calibration matrix for both images C
and C′ are known, the essential matrix E can be obtained as
follows:

E = C′TFC. (17)

From the essential matrix it is possible to calculate
the camera’s extrinsic parameters (translation t and rota-
tion R) by identifying the correct pair of projection matri-
ces P and P′, which represent the camera pose at the
instant each image is taken according to a global coor-
dinate system. If P = [I|0], meaning that the cam-
era begins at the center of the coordinate system, then
P′ = [R|t] indicates camera motion between frames. This
camera motion is then parametrized as the new mean vector
for the CGP framework, so m( x)= {ẋ, ẏ, ż, γ̇ , β̇, α̇}, where
( ẋ, ẏ, ż) are the coefficients of t (transformed back into the
camera’s local coordinate system) and ( γ̇ , β̇, α̇) represent
the camera’s current orientation in Euler angles (obtained
from R).

4.4.1. Training stage Training on the semi-parametric
CGP framework is conducted as described previously, with
two exceptions. First of all, Equation (9) has to be slightly
altered to account for the fact that m( x) is no longer
assumed to be zero. This is achieved by defining ε =
(y− m( x)) as the difference between the ground-truth
information y and the mean vector m( x). If this value is
small, it means that the geometric model is doing a good
job and there is no need for further refinement of the esti-
mate. If this value is large, the non-parametric model takes
over and compensates the difference. The new log-marginal
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(a) (b)

Fig. 4. Examples of epipolar lines during vehicle translation (a) and rotation (b).

likelihood cost function now becomes

ζ = ln p( y|X )= −1

2
log( |K|)−1

2
εTK−1ε − N log( 2π ) .

(18)

Also, the introduction of a geometric model into the
CGP framework introduces a new set of hyperparameters,
the calibration parameters present in C (focal lengths lx
and ly, skew s and image center coordinates px and py).
A straightforward solution to this problem would be to
provide these calibration parameters manually, however we
propose here their incorporation into the optimization pro-
cess. This approach maintains the CGP assumption that
no traditional camera calibration is necessary, and if these
parameters are known they can be used as the initial guess
during the optimization process. In fact, since the geomet-
ric model is now used in tandem with the non-parametric
model, the final calibration parameters may differ from
those provided by an independent calibration.

4.4.2. Inference stage Inference for a single test point x∗

is now conducted according to Equations (19) and (20). By
adding the mean function to f

∗
we assure that, as the testing

point x∗ deviates from the training dataset �, the outputs
converge to the estimates provided by the geometric model.
As expected, V( f

∗
) remains unaltered by the introduction

of m( x) as a non-zero term, since the geometric model is
not capable of providing any uncertainty estimates. The new
equations are

f
∗ = m( x∗)+KT

s K−1 (y− m( x)) (19)

V( f
∗
)= Kii( x∗, x∗)−KT

s K−1Ks. (20)

5. Optical flow parametrization

Our method uses sparse optical flow information, extracted
from consecutive pairs of monochromatic images obtained
using a single camera configuration. This optical flow infor-
mation is then processed to generate the vectors xk that
will serve as input for the CGP framework described in
the previous section. We assume that most of the environ-
ment around the vehicle is static (any optical flow detected

is due solely to camera motion), and we also assume that
the frames-per-second rate is constant throughout naviga-
tion (which is important for absolute scale recovery based
on training information). No other prior knowledge of the
environment or the visual system is necessary. A histogram
filter is initially applied to all images to minimize the effects
of global changes in luminosity.

5.1. Feature extraction

Owing to its robustness and invariance properties, the
feature extraction and matching processes are performed
using the scale-invariant feature transform (SIFT) algorithm
(Lowe, 2004) with sub-pixel accuracy and frame-to-frame
tracking, although any other similar method could be read-
ily applied for speed purposes (Bay et al., 2006) or to
increase the amount of information obtained from each
frame.2 Examples of initial feature sets in 2D navigation
for a particular frame are shown in Figure 5(a), and their
corresponding matching sets in relation to the subsequent
frame are shown in Figure 5(b), where each matching pair
is connected with a line. It is possible to see a substantial
amount of false matches, mostly due to structure similarity,
poorly texturized regions and occlusion caused by changes
in viewpoint.

To remove these false matches (or outliers) we use
the seven-point RANSAC algorithm (Fischler and Bolles,
1981), a probabilistic tool that elects the predominant
motion hypothesis between frames and discards matches
that do not comply to the constraints it imposes. These
constraints are calculated based on the geometric model
described in the previous section, and if most features in
the environment are assumed static the predominant motion
hypothesis will be the camera’s own motion. This step is
also useful in minimizing the impact of dynamic objects,
since their features will generate an optical flow that is not
consistent with the rest of the image and therefore will be
eliminated as false matches. The resulting feature sets are
presented in Figure 5(c), and they constitute the sparse opti-
cal flow information that best represents vehicle motion
between frames according to this framework. Features are
tracked for an average of six frames, and the overlapping
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(a) (b) (c)

Fig. 5. Examples of the three stages of feature extraction for translation (top line) and rotation (bottom line) motion in 2D navigation:
(a) initial features; (b) initial matches; (c) matches after RANSAC.

regions range from 90% (forward motion) to 75% (hard
turns).

5.2. Preserving spatial structure

A straightforward way of generating the input vector xk

would be to use the individual optical flow information from
each matching pair directly. In this scenario, xk would be
a vector of size 2N , where N is the number of successful
matches and 2 is the number of optical flow components.
However, the direct use of individual optical flow parame-
ters to generate xk would incur in two problems. First of all,
two different pairs of images will most certainly produce
matching sets of different sizes, thus changing the dimen-
sion of xk and the nature of the underlying function. Also,
two different pairs of images will most certainly produce
matching sets that are distributed differently throughout the
image, and since optical flow information is heavily depen-
dent on pixel coordinate (each region of the image reacts
differently to camera motion) any comparison would be
rendered moot.

It is therefore necessary to generate an input vector xk

that both has a constant dimension regardless of the number
of matching pairs and also maintains the spatial structure
of optical flow distribution. Our method to achieve these
two requirements consists in dividing the image into equal-
sized rectangles (Figure 6), and assigning to each of them
the subset of matched features whose coordinates lie within
its boundaries (by convention, we use the feature coordi-
nates on the first frame). The optical flow parameters for
each rectangle can now be calculated as the average value
of all of its matched features’ optical flow information. If a
particular rectangle has no features, its optical flow param-
eters are calculated as the average value of its surrounding
rectangles, based on the assumption that changes in opti-
cal flow should be smooth throughout the image. The input

vector xk is now of dimension 2hw, where h and w are the
numbers of rectangles the image was divided into vertically
and horizontally, respectively, and is generated by taking
the optical flow components for each rectangle in a specific
manner (i.e. starting on the top left rectangle and moving
horizontally line by line).

5.3. 3D navigation

In the 3D scenario the camera was pointing downwards, in
such a way that each image captures what is below the air-
craft. This configuration poses a challenge in both feature
extraction and matching, due to loss in detail and sensitivity
to angular motion that translates into inconsistent (and often
small) overlapping areas between frames (Figure 7(a)).
Assuming that the aircraft will maintain a considerable alti-
tude and move roughly horizontally, it is reasonable to con-
sider the ground plane as homogeneous, and therefore the
entire image will share the same optical flow information.
This assumption allows the optical flow information to be
encoded as a single pair of parameters, here the average
shift distance d and angle θ of all successful matches. The
position ( x, y)k and size ( h, w)k of the overlapping regions
in the image are also related to camera motion (see Fig-
ure 7(b)), and therefore contain information that could be
useful in the inference process.

6. Experimental results

The methodology described in this paper was first evaluated
in 2D environments, using data collected from a ground
vehicle (Figure 8(a)) navigating in outdoor environments
(both urban and off-road). In this scenario only two tasks
(forward translation and rotation on the z-axis) are nec-
essary to describe vehicle motion between frames, which
translates into fewer hyperparameters, less computational
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(a) (b)

Fig. 6. Examples of optical flow parameters for translation (a) and rotation (b) motion in 2D navigation.

(a) (b)

Fig. 7. Optical flow parametrization in 3D navigation: (a) examples of matching sets; (b) diagram for optical flow parameters.

(a)

(b) (c)

Fig. 8. Vehicles used in the experiments: (a) modified car; (b) unmanned aerial vehicle; (c) robotic platform for generalization testing.

memory requirements and faster training times. For the
experiments in algorithm generalization, we used a different
ground vehicle composed of a robotic platform mounted on
the back of a car (Figure 8(c)). The same methodology was
then extended to address 3D environments, using data col-
lected from an unmanned aerial vehicle (UAV; Figure 8(b)),
during a flight over a deserted area. The UAV is capable

of moving in all six degrees of freedom, providing a test
platform for any visual odometry application.

6.1. Ground experiments

For the ground vehicle tests, a conventional car (Figure 5.3)
was modified to include two different cameras, a standard
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SICK laser sensor and a GPS system with precision of up to
5 m, used here solely for comparison purposes. The camera
captured images at a rate of roughly 5 frames per second at a
1,152×758 pixel resolution, which were then downsampled
to 384×252 pixels (one third of the original resolution). The
reasons for this downsample are: (1) to verify the robustness
of the algorithm in low-resolution cameras (marginally bet-
ter results can be obtained with higher resolution); (2) to
speed up SIFT (or equivalent) feature extraction and match-
ing processes. During data acquisition the car moved at
speeds of up to 40 km/h over asphalt and grass, and inter-
acted normally with pedestrians and other vehicles. It is also
worth noting that, even though the tests were conducted out-
doors, GPS information is unavailable in several areas due
mostly to tree coverage and tall buildings.

The training dataset is composed of 2,000 images
acquired in an urban environment. Ground-truth informa-
tion was obtained based on laser data, using the iterative
closest point (ICP) algorithm (Lu and Milios, 1994), and
the resulting localization estimates are depicted in Figure
9(a). Because they are incremental, these estimates are by
themselves subject to drift due to the accumulation of small
errors over time. Even though this drift could in principle
be greatly reduced by fusing the estimates with an absolute
sensor (such as GPS), here we use the ICP results directly
as ground-truth information. This is done in order to verify
the CGP framework’s ability to average over small errors
by using a large training dataset to learn the underlying
function directly from noisy information, and also to min-
imize the need for high-precision sensors during the train-
ing stage. Empirical tests show marginal improvements in
localization when more precise ground-truth is used.

The testing dataset is also composed of 2,000 images,
acquired using the same vehicle over a different trajec-
tory of roughly 2 km. Localization results obtained from
the same ICP algorithm used on the training dataset are
presented in Figure 9(b) for comparison purposes. Simi-
lar results obtained using a geometric model (SFM), with
automatic camera calibration and manual scale adjustment
to account for scale recovery in a monocular configuration,
are presented in Figure 10(a). As expected, both approaches
are subject to drift caused by error accumulation, especially
in rotation due to smaller overlapping areas between frames
and higher sensitivity to imprecisions in angular motion.

Figure 10(b) shows the localization results obtained
using two independent GPs, one for each task (linear and
angular velocities). The first notable aspect of these results
is the ability of the GP framework to recover scale up to
a high degree of precision, which is a non-trivial task in
monocular configurations as shown by the SFM estimates.
We attribute this ability to the non-parametric structure of
the model, that is capable of exploiting similarities in opti-
cal flow distribution during training and extrapolating this
information to infer scale directly from a single image.
However, the smaller number of training samples represent-
ing vehicle rotation, allied with the non-incorporation of

Table 1. Linear and angular errors per frame for each task in
ground experiments.

Method Translational error Rotational error
(rmse) (10−2 m) (rmse) (10−2 rad)

ICP 2.92± 4.70 0.06± 0.14
SFM 9.75± 12.12 0.23± 0.16
Single GPs 5.98± 8.67 0.14± 0.22
CGPs 5.74± 8.18 0.07± 0.08
MCGP 5.12± 7.49 0.05± 0.07

cross-correlations between tasks, makes angular inference
especially challenging in this approach.

The localization results obtained using the standard CGP
framework (without the geometric model) are presented in
Figure 10(c), where it is possible to see a substantial reduc-
tion in angular drift due to the CGP’s ability to correlate
between tasks, using linear motion information to further
refine its angular estimates. Finally, Figure 2(b) depicts the
localization results obtained using the MCGP. The calibra-
tion parameters were optimized as hyperparameters with
random initial guesses, so no prior knowledge of the visual
system was required. Again, scale is recovered up to a high
degree of precision, and angular motion errors are even less
pronounced. We attribute this improvement to the MCGP’s
ability to ‘fine-tune’ the estimates provided by the geometri-
cal constraints, without the need to fully model the underly-
ing phenomenon as it is the case when no geometric model
is used.

A quantitative comparison of all methods described in
this section is presented in Table 1, in terms of root mean
square error (rmse) per frame. The ground-truth for these
comparisons was obtained using ICP estimates integrated
into a exactly sparse information filter (ESIF) framework
(Walter et al., 2007). As expected, ICP has the lowest trans-
lational error, because distances can be measured directly
from a laser scanner. Even with manual scale adjustment,
the SFM approach still shows the highest translational error,
and all GP-based approaches to visual odometry performed
similarly in the scale recovery aspect. The rotational error,
on the other hand, decreased substantially with the intro-
duction of the GP framework over the traditional geo-
metric model approach, and continued to decrease consis-
tently with the incorporation of multi-tasking and the semi-
parametric extension. Even though ICP has a rotational
error comparable to CGP, its variance shows that this error
is not spread evenly throughout the trajectory, being con-
centrated in only a few frames as shown in Figure 9(b). The
CGP framework is able to smooth out these errors and gen-
erate more consistent results, without any large localized
discrepancies.

6.1.1. Changing environments The same methodology
was tested in an off-road environment, composed mostly
of trees and grass terrain. The dataset is composed of 4,000
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Fig. 9. ICP localization results in ground experiments: (a) training dataset; (b) testing dataset.
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Fig. 10. Localization results in ground experiments using different methods: (a) SFM with manual scale adjustment; (b) two
independent single GPs; (c) CGPs; (d) MCGP.

images obtained in a park using the same vehicle over a tra-
jectory of roughly 3 km. The same urban training dataset
was used and there was no further training conducted using
information from the new environment. Our goal was to
verify the MCGP framework’s ability to generalize over dif-
ferent environments, exploring similarities in optical flow
distribution that are inherent to vehicle motion and are
present in any type of structure regardless of its physical
nature. The localization results obtained under these condi-
tions are presented in Figure 11, along with image examples
from different parts of the trajectory.

In Figure 11 we can see that the SFM algorithm was able
to recover the overall shape of the trajectory, however, as
expected, there is no scale consistency (left portion of the
image) and the algorithm eventually misses a turn (bottom
of the image), compromising the final stages of localization.

The MCGP framework, on the other hand, uses this infor-
mation as initial guesses and further refines its estimates
using training data, which even though from a different
environment contain enough optical flow distribution exam-
ples to provide a robust model of vehicle motion. This
results in scale recovery up to a high degree of preci-
sion (average translational error of 6.57 ± 9.64 × 10−2

m per frame), and by exploring cross-correlations between
linear and angular velocities the rotational error not only
decreases (average rotational error of 0.08±0.07×10−2 rad
per frame) but is also more evenly distributed throughout
the images.

6.1.2. Changing cameras In addition to changing the envi-
ronment in which the vehicle navigates, we also explored
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Fig. 11. Localization results in off-road ground experiments.

the effects of changing the camera in which the images are
acquired. This was done in order to verify the MCGP frame-
work’s ability to deal with variations in camera parameters,
as well as variations in optical flow distributions that are
not caused by different structures in the environment, but
rather by changes in the way camera motion is related to
vehicle motion. This new camera has a lower resolution
(producing images of 640 × 480 pixels, which were then
also downsampled to the same 384 × 252 pixels) and was
positioned in such a way that it captures the same portion of
the environment as the previous camera, but from a different
perspective (see Figure 12).

The same urban training dataset was used without any
further training in this new configuration, and the testing
dataset was composed of 2,000 images acquired in the same
2 km trajectory as the previous urban testing dataset, but
from the new camera’s perspective (both cameras acquired
their images simultaneously). Figure 13 depicts the local-
ization results obtained using the MCGP framework in both
testing datasets. It is clear that the camera exchange had
some impact on the quality of the results, most notably
in respect to the linear velocity estimates. This is to be
expected, since a GP’s ability to recover scale in visual
odometry from a monocular configuration is dependent on
structure similarity between training and testing data. The
inference process assumes that the environment reacts in a
predictable manner in relation to vehicle motion, and is able
to extrapolate scale based on ground-truth information. If
the camera changes this assumption is no longer valid, since
the environment will now react differently to vehicle motion
due to new geometrical constraints that were not modelled
during training.

However, the MCGP framework is capable of encoding
the effects of camera exchange as an increase on uncer-
tainty, to reflect discrepancies between training and testing

data. As the testing data deviates from the training data,
the corresponding estimates become less and less accu-
rate, a phenomenon that is captured by an increase in the
covariance matrix coefficients. So, even though the esti-
mates obtained using different cameras were less accurate
(translational error of 7.87± 9.66× 10−2 m per frame and
rotational error of 0.10 ± 0.14 × 10−2 rad per frame), this
increase in uncertainty maintains the results equally valid in
a probabilistic point of view.

6.1.3. Generalization analysis Here we explore the limits
of the proposed algorithm with regards to radical changes
between training and testing datasets. The first experiment
is conducted using the same urban dataset both for training
and testing, however during testing a different number of
frames is skipped at each iteration, thus generating unique
sets of optical flow distribution that were not learned during
training. This configuration also generates smaller over-
lapping regions, because the vehicle now travels a longer
distance between frames. The average errors per frame are
shown in Figure 14, for both linear and angular velocities.
It is possible to see that the error in linear velocity increases
linearly with the number of skipped frames (and, thus,
the algorithm’s ability to recover scale decreases, because
training and testing optical flow distributions are increas-
ingly different). The error in angular velocity also increases
monotonically with the number of skipped frames, how-
ever the rate in which this error increases has a significant
jump between two and three skipped frames (we attribute
this to the increasingly smaller overlapping regions between
frames as more frames are skipped). When four frames are
skipped at every iteration (only one for every five are used)
the errors in linear velocity are around 20 times higher
than in the original configuration, and the errors in angu-
lar velocities are around 15 times higher, an indication that
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Fig. 12. Examples of images taken at the same vehicle position with different cameras. The first line corresponds to the original camera
and the bottom line corresponds to the new camera (the new camera can be seen in the images captured by the original camera). The
displacement between cameras is approximately 2 m horizontally and 0.5 m vertically.
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Fig. 13. Localization results in ground experiments using different cameras.

the algorithm has failed and no more useful localization
information can be obtained.

The second experiment is conducted using a different
robotic platform (Figure 8(b)), with different camera and
motion dynamics. This new setup was used to collect data
on a highly dynamic environment, composed of 14,500
images and their corresponding ground-truth information
acquired from a fusion of GPS and inertial sensors. Results
obtained using the proposed method on this new dataset
are presented on Figure 15, where it is possible to see that
MCGP was able to achieve localization up to a satisfactory
degree of precision (linear and angular velocity errors were
on par with those calculated so far). The next step was to use
this same dataset for training and test the resulting model on
the urban dataset mentioned previously.

It is natural to assume that under these conditions the
proposed algorithm will not perform adequately, since the
optical flow distributions available for training will differ
radically from those presented during testing, due to dis-
crepancies in the camera’s intrinsic and extrinsic parameters

and also due to changes in vehicle dynamics. Here we aim
to evaluate how this performance decreases as less and less
similarities between training and testing data are present.

The results are depicted in Figure 16, and again it is
possible to see that the error in linear velocity increases
linearly with the percentage of different optical flow distri-
butions on the training dataset, whereas the error in angular
velocity initially increases slowly and afterwards has a sig-
nificant jump showing where the algorithm starts to fail (at
approximately 50% of different optical flow distributions).
This similarity between results in both experiments is to
be expected, since they are all in essence dealing with the
same scenario: a different set of optical flow distributions
between training and testing datasets.

6.1.4. Extension to SLAM Up to this moment all vehi-
cle motion estimates were obtained independently, based
on information obtained from a single image pair. How-
ever, since the CGP framework allows the assessment of
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Fig. 14. Average (a) translation and (b) rotational errors per frame according to the number of frames skipped at each interval (using
MCGP and the same urban dataset for training and testing).

a full covariance matrix of uncertainties, we explore here
extensions to the SLAM scenario as an attempt to improve
results. More specifically, we use an ESIF (Walter et al.,
2007) to track all vehicle poses during navigation and a
loop-closure algorithm to recognize visited areas, using this
information to retroactively decrease global uncertainty.
The loop-closure process is done by matching features
from the current frame with features from previous frames
(downsampled by a factor of five for speed purposes, with-
out impacting results), and an area is assumed revisited if
the number of successful matches is higher than a given
threshold.

The localization results obtained using this approach in
both urban and off-road testing datasets are depicted in
Figure 17. In the urban dataset it is possible to see how

the loop-closure algorithm was capable of recognizing the
second pass over the west street, aligning the trajectory and
using this information to correct misalignments on the other
streets. During the third pass on the west street, the vehi-
cle was facing the opposite direction, so it was unable to
match any images, resulting in residual misalignment in
this area. The vehicle was also capable of recognizing its
return to the starting point (upper left portion of the image).
The off-road dataset presented a more challenging scenario
for the ESIF framework, because the more complex trajec-
tory and navigation in opposite directions complicated the
loop-closure process. Still, the vehicle was capable of rec-
ognizing its return to the initial street and correct most of
the misalignments that occurred on the left portion of the
image.
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Fig. 15. Localization results obtained using the proposed method and a different robotic platform (training and testing conducted in the
same conditions), along with sample images obtained during navigation.

Table 2. Linear and angular errors per frame for each task in
ground experiments.

Scenario Translational error Rotational error
(rmse) (10−2 m) (rmse) (10−2 rad)

Same environment 5.12± 7.49 0.05± 0.07
Different environment 6.57± 9.64 0.08± 0.07
Different camera 7.87± 9.66 0.10± 0.14
Extension to SLAM 5.98± 6.54 0.04± 0.07

6.2. Aerial experiments

The visual odometry algorithm proposed in this paper was
also tested using data collected from a UAV (Figure 5.3)
flight over a deserted area, at a rate of 3 frames per sec-
ond and an average speed of 110 km/h. The UAV was
also equipped with inertial and GPS sensors that served
as ground-truth information. The first 4,000 frames after
aircraft stabilization were used for training, and the 2,000
following frames were used for evaluation (maintaining alti-
tudes of 80–100 m). The SIFT algorithm failed to find any
matches in around 2% of the image pairs, due to a lack of
overlapping areas caused by severe angular motion. These
frames were avoided during training, and during evaluation
the results from the previous timestep were repeated. It is
important to note that, even though constrained to forward
motion, the UAV was capable of experiencing motion in all
six degrees of freedom (linear velocities on the x-, y- and z-
axis and angular velocities γ̇ , β̇ and α̇ in Euler angles) due

to air resistance and draft, providing a test platform for any
visual odometry application. A quantitative error estima-
tion for each one of these degrees of freedom is presented
in Table 3, along with comparisons with other techniques.

Figure 18 presents the localization results obtained using
only a calibrated camera model (SFM) and the MCGP
framework (with first-order temporal dependency between
frames). The flight trajectory was mostly horizontal, and
Figure 18(a) shows that the MCGP approach was capable
of recovering its overall shape, with no missing corners or
changes in the plane of navigation. The absolute scale was
also recovered to a high degree of precision, estimated from
the training data and extrapolated to address new points in
the input space. Significant changes in altitude to areas with
no training data would compromise scale recovery, as this
would change the correlation between image structure and
vehicle motion. As expected, a combination of accumulated
errors and lack of matching features generated a drift over
time that could not be avoided, however the MCGP frame-
work was able to improve significantly the results obtained
using only the geometric model. In Figure 18(b) it is possi-
ble to see the cyclical changes in altitude during flight, rang-
ing from 80 to 100 m. The high frequency of these changes
constitute a challenge for the GP as a regression tool, due
to the difficulty in separating what is a trend and should be
modelled and what is noise and should be discarded. Inter-
estingly, the use of temporal dependencies between tasks
created a ‘smooth and delay’ effect as a response to sudden
variations, because of the proximity constraint imposed to
outputs in subsequent steps.
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Fig. 16. Average (a) translational and (b) rotational errors per frame according to the percentage of similar optical flow distributions
between training and testing datasets (using MCGP and different robotic platforms).

Table 3. Root mean square linear (10−2 m) and angular (10−2 rad) errors per frame for each task in aerial experiments.

Task SFM Single GPs CGPs MCGP

X 1384.10± 25.72 20.47± 0.1552 8.49± 0.0668 8.11± 0.0727
Y 453.56± 5.76 6.84± 0.0541 5.95± 0.0472 5.71± 0.0269
Z 325.50± 6.69 10.16± 0.0806 10.23± 0.0812 9.89± 0.0714
Roll 11.48± 0.56 0.69± 0.0056 0.66± 0.0053 0.47± 0.0051
Pitch 5.09± 0.01 0.35± 0.0027 0.26± 0.0021 0.18± 0.0025
Yaw 19.07± 0.55 0.41± 0.0032 0.33± 0.0027 0.25± 0.0021

7. Conclusion and future work

This paper presented a novel technique for visual odometry
based on machine learning concepts. A novel multi-task

GP inference method was proposed as a way to provide
full covariance matrices for motion estimates, calculating
both auto- and cross-dependencies between tasks. By learn-
ing the hyperparameters through a Bayesian framework it
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(a) (b)

Fig. 17. Localization results obtained using the MCGP results combined with ESIF (green dots are GPS information, red lines are the
localization results and yellow circles are loop-closures; color refers to the online version of this article): (a) urban dataset; (b) off-road
dataset.

(a)

(b)

Fig. 18. Localization results obtained in aerial experiments: (a) 2D plot (top view); (b) 3D plot.
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is possible to (indirectly) model the underlying character-
istics of a camera, thus avoiding the calibration method
necessary in other approaches. This inference method was
also extended to include first-order temporal dependencies
between tasks, and the traditional zero mean assumption in
GP implementations was substituted by a geometric model
capable of providing initial estimates that were then further
refined using training data. The simultaneous optimization
of both the calibration parameters and the hyperparame-
ters eliminates the need for prior calibration of the visual
system in this semi-parametric approach, and if this infor-
mation is available it can be incorporated seamlessly as
initial guesses. This methodology is capable of recovering
scale in a monocular configuration, provided that training
and testing data share a certain similarity in optical flow
distribution, and the estimation of uncertainties allow the
use of results in filtering and SLAM frameworks. Even
though the training process may take up to a few hours,
depending on the number of tasks, new inferences can be
computed at a rate of 10 Hz, and thus are suitable for
real-time applications. Tests were conducted in both 2D
and 3D environments, using data collected from a mod-
ified car and an unmanned aerial vehicle, and the results
show a significant improvement over standard visual odom-
etry algorithms. Future work will focus on online learning,
where the vehicle uses information obtained during navi-
gation to refine its own model while eliminating redundant
data points to keep the computational costs constant. The
use of optical flow information for automatic detection of
dynamic objects will also be explored, as means to improve
the visual feature sets used during training and testing.

Notes

1. In principle, each particular training dataset may be com-
posed of a different set of observations. However, since in
the visual odometry scenario this is generally not the case
(each training image has a corresponding ground-truth esti-
mation for all degrees of freedom) we will assume from now
on that all training datasets are composed of the same set of
observations.

2. Dense optical flow extraction methods, such as that of Lucas
and Kanade (1981), were tested and discarded due to the num-
ber of parameters to be manually determined, and also due to
the large variability in performance in different environment
and driving conditions.
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