
Model Predictive Control of a Heavy-Duty Truck Based on
Gaussian Process

Fernando Henrique Morais da Rocha, Valdir Grassi Jr
Sao Carlos School of Engineering (EESC)

University of Sao Paulo (USP)
Sao Carlos, SP, Brazil

E-mail: fernandorocha@usp.br,
vgrassi@usp.br

Vitor Campanholo Guizilini, Fabio Ramos
School of Information Technologies

University of Sydney
Sydney, NSW, Australia

Email: vitor.guizilini@gmail.com,
fabio.ramos@sydney.edu.au

Abstract—A recent trend on the automotive market is
the incorporation of several driver assistance systems into
common vehicles. Among the most studied systems, lies the
cruise control (speed), either for platooning or to ease off
driver’s tasks. For the design of this controller, particularly
when applied to large and heavy vehicles, a longitudinal
model that represents satisfactorily all the features of this
complex system is necessary. In this sense, a Gaussian
Process model was applied within Model Predictive Control
to regulate the speed of a heavy-duty truck. The controller
takes the variance produced by the Gaussian Process model
into account on the optimization of the control signal. The
proposed controller achieved low tracking error even on hard
conditions, like steep roads.

I. INTRODUCTION

Recently, the automotive industry is pushing the devel-
opment of several concepts which can make traffic more
efficient [1]. In this sense, the control of vehicles has
been studied for several years in many different fields, like
automated highway systems [2], vehicle stability control
[3], autonomous vehicles and several kinds of driver assis-
tance systems. Automatic cruise controls, active rollover
protection and parking assistance are some systems that
are available on the market.

Heavy-duty vehicles are the most probable candidate
to be completely automated [4]–[6]. It’s been shown
that longitudinal control for heavy duty vehicles is quite
different from passengers cars [7], [8]. The main differ-
ences are related to vehicle dynamics, affecting modeling
and control design directly. In fact, the longitudinal and
platooning control of heavy duty vehicles are harder to
achieve due to the following characteristics:

• Low power to mass ratio: the control input saturates
easily and the vehicle has limited acceleration capa-
bility.

• Mass dominant: the mass of the vehicles are big,
greatly affecting the dynamics.

• Large Actuator delay: appearing on both throttle and
braking systems, and also on automatic gearboxes.

Model Predictive Control [9], [10] is a class of computer
control algorithms that predicts future responses of a plant
based on its system model. Control actions are obtained by
repeatedly minimizing a cost function over a finite horizon,
in a receding horizon strategy.

The popularity of MPC is to a great extent owed to the
ability of MPC algorithms to deal with constraints that
are frequently met in control practice and are often not
well addressed with other approaches. MPC algorithms
can handle hard state and rate constraints on inputs and
states [11].

However, for this very complex system, the traditional
modeling is very complicated, so empirical system iden-
tification techniques were employed, where the model is
built (or learned) based on data collected during vehicle
operation.

In this work, a Model Predictive Controller is employed
to tackle the longitudinal control of a heavy duty road
truck. The system model is obtained using Gaussian
Processes, a data-driven probabilistic modeling technique
that has the advantage of providing an indication of the
model quality by the variance.

II. DYNAMIC SYSTEM MODELING WITH GAUSSIAN
PROCESS

Consider a set of N vectors of dimension D containing
noisy input data, X = [x1,x2, · · · ,xN ], and a vector
containing observed output data from the system to be
modeled, y = [y(1), y(2), · · · , y(N)]T . The goal of the
modeling process is to build a model (a function f(·))
from X and y, and then find the output y(N + 1) when
the system is presented with a new input vector x∗.

A Gaussian Process is an example of probabilistic,
non-parametric modeling technique with uncertainty pre-
diction. A Gaussian Process is defined as a collection
of random variables that have a joint multivariate Gaus-
sian distribution with the form: f(x1), · · · , f(xn) ∼
N (µ(f(x)),Σ), where Σpq represents the covariance be-
tween the points xp and xq . The mean function µ(f(x))
(which can be stationary and is usually assumed as
µ(f(x)) = 0) and the covariance function Σpq =
Cov(xp, xq) completely define a Gaussian process. As-
suming a relation between the inputs x and the outputs
y as y = f(x), we have Cov(yp, yq) = Cov(xp, xq),
where C(·, ·) is any function that generates a positive
definite covariance matrix. The most common choice for
covariance function is the Squared exponential, seen in
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where v0, v1, wd, d = 1, · · · , D are the hyperparameters
of the covariance function and D is the input dimension.
Other common covariance functions are: Matérn, Expo-
nential, Rational-Quadratic, among others [12]. Given a
training set, the hyperparameters Θ = [w1 · · · wD v0 v1]T

have to be identified (learned). The model is determined by
f(·), X and y, and not by the parameters of a fixed model
structure, and this is what makes it a probabilistic and non-
parametric approach [13]. In this sense, the probability of
the hypothesis f(x∗) according to a dataset X and y can
be seen on (2):

p(f(x∗|X,y) =
p(y|f(x∗,X))p(f(x∗))

P (y|X)
(2)

The term p(y|f(x∗,X)) is the conditional likelihood of
the model and, as it is a probability distribution, represents
represents the model output as a mean and variance,
p(f(x∗)) represents the prior knowledge from the model.
Based on the covariance function, a set of hyperparameters
is determined using the training set X,y, and then the
posterior value can be calculated.

The hyperparameters are obtained through the maxi-
mization of the likelihood p(f(x∗|X,y). Since an analyti-
cal solution is very difficult to calculate, approximations or
other techniques are necessary, such as the one described
below.

The calculation of the model output for a given covari-
ance function [13] is straightforward. On (2), it can be
seen that the posterior probability depends on the hyper-
parameters through the likelihood p(y|f(x∗,X). Applying
the log on this probability, which now can be calculated
analytically, we obtain:

L(Θ) = −1

2
log(|K|)− 1

2
yTK−1y − N

2
log(2π) (3)

where y is the N×1 vector containing the training outputs,
K is the N ×N covariance matrix of the training inputs.
The hyperparameters are obtained through the maximiza-
tion of (3), and this is known as Maximum Likelihood
Method. Any optimization method can be used, however,
we note that due to a matrix inversion at every iteration,
depending on the size of the dataset, this method can be
computationally demanding [13].

As can be seen on (1), there is one hyperparameter for
each input dimension, so, through the learning process, it
is possible to identify the most relevant input dimensions
or the ones that does not contribute to the output by
analysing the magnitude of the hyperparameters. If it
is zero, or near zero, it means that the corresponding
dimension has little impact and can be removed. This
effect is called Automatic Relevance Determination, idea
developed by MacKay and Neal [14].

The described method is easily applied to regression
problems. From the training set X, the covariance matrix

KN of order N ×N is determined. Then, for a new input
vector x∗, a new covariance matrix KN+1 of order N +
1×N + 1 is obtained by:

KN+1 =

[ [
KN

] [
k(x∗)

]
[
k(x∗)T

]
[k(x∗)]

]
(4)

where k(x∗) is the N × 1 covariance vector between
the new input and the training data, and k(x∗) is the
variance of the new input data. For the new input data,
the corresponding output distribution is given by ŷ(N +
1)|x∗ ∼ N (µ(x∗), σ2(x∗)), where:

µ(x∗) = k(x∗)TK−1y (5)

σ2(x∗) = k(x∗)− k(x∗)TK−1k(x∗) + v0 (6)

A more detailed explanation for the application of
Gaussian Processes on regression problems can be seen
in [12] and [15].

The described approach can model static nonlinearities,
and can also be used for modeling of dynamical systems
using delayed inputs and outputs as regressors, as a NARX
(Nonlinear AutoRegressive model with eXternal input), as
can be seen on Fig. 1, where the GP input vector x =
[u(k), u(k−1), . . . , u(k−n), y(k), y(k−1), . . . , y(k−n)]
is used to predict the output of the system in the next time
step.
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Figure 1. Gaussian Process NARX-like model [16].

Another important feature of the Gaussian Process
models is the fact that not only the output is predicted
from new input data, but also the confidence about this
prediction, which can be used to identify regions of the
input space where the prediction is not good enough, due
to lack of training data in that region, or the complexity
of the system.

III. MODEL PREDICTIVE CONTROLLER

The term Model Predictive Control is used to make
reference to a wide range of controllers which make
explicit use of a model of the process to obtain the control
signal for the system by minimizing an objective function
[9]. The main ideas of this type of controller are:



• Explicit use of a model to predict the system output
at a future horizon;

• Calculation of a sequence of control signals by op-
timizing a cost function that measures the system
performance;

• Receding horizon strategy, in which the horizon is
shifted towards to the future at each time instant, and
the first item from the calculated control signal is
applied.

The appeal of this idea from a control engineering
perspective is obvious because it provides a systematic
approach to the design of strategies that achieve optimal
performance. MPC is arguably the most widely accepted
modern control strategy because it offers, through its
receding horizon implementation, an eminently sensible
compromise between optimality and speed of computation
[10]. A block diagram of the control strategy can be seen
in Fig. 2.

Figure 2. Model-based Predictive Controller diagram [17].

The benefits of optimal control are, however, difficult to
achieve in the case of systems with nonlinear models and
systems that are subject to constraints on input variables
or model states, which is the case for most real systems.
For both these cases, in general, it is not possible to derive
analytic expressions for the optimal control solution, and
iterative optimization (numeric) methods are necessary.

In order to solve the MPC control problem, it is
necessary to define some elements:

Model: The model of the system. Practically every
possible form of modeling a process can be used for MPC,
like Impulse and Step response, transfer functions, state
spaces, nonlinear models and various other approaches,
like Neural-Networks, Fuzzy logic, Gaussian Process [18]
[19] [20], [21].

Cost Function: Many different cost function can be
used. The general aim is that the future output y on the
considered horizon should follow a determined reference
signal (r) and, at the same time, the control effort (∆u)
necessary for doing so should be penalized [9]. The most
used expression for such cost function is:

J(P,C, r, y) =

P∑
j=1

δ(j)[r(k+j)−y(k+j)]2+

C∑
j=1

λ(j)[∆u]2

(7)
where y(k + j) is the model predicted output for every
step in the prediction horizon P (j = 1, . . . , P ), r(k + j)
is the reference trajectory and C is the control horizon,
which defines that after an interval C < P the proposed
control signal is kept constant (u(k + j) = u(k + C),

for any C ≤ j ≤ P ). The parameters δ(j) and λ(j) are
sequences that consider the future behavior and can be
tuned to obtain, for example, smoother control with less
effort or tighter control.

Constraints: In practice all processes are subject to
constraints. The actuators have a limited field of action
and a determined slew rate, and this limitations has to be
respected for a safe and efficient operation of the system.

In order to obtain the control signal sequence u(k+ j)
that leads the system to the desired set-point, it is nec-
essary to minimize the functional J in (7), such that
the prediction error between r(k + j) and y(k + j) is
a minimum. As it is a receding horizon strategy, only the
first element of this vector u(k+ 1) is used, rejecting the
rest and repeating the calculations at the next sampling
time.

In this paper, the process model to be used on the MPC
is a Gaussian Process, so one issue that can appear for
applied MPC is the efficiency of a numerical solution.
Nonlinear programming optimization algorithm is very
demanding for computation. Various approximations and
other approaches (e.g. approximation of explicit solution
[22]) exist to decrease computational load. Some works
that further investigate the utilization of GP models for
control can be found in [11], [22]–[25].

IV. GAUSSIAN PROCESS BASED MPC APPLIED TO A
HEAVY-DUTY TRUCK

The vehicle to be modeled is a 7 meters long Heavy-
Duty road truck with 9 ton weight. The drivetrain has a
12.7 l motor, with maximum power of 360 hp, maximum
torque of 1850 Nm and a 14-gear automatic gearbox. The
brake system has compression release engine brake and
pneumatic drum brakes. For this system, traditional model-
ing techniques are not capable of properly reproducing the
dynamics of the vehicle, hence, the system was modeled
with a Gaussian process model.

A. Longitudinal GP Model of the Truck

The datasets for training were collected from the real
vehicle by driving it on the campus of University of São
Paulo, São Carlos. The vehicle data were obtained from
its CAN (Controller Area Network), accessed through a
ROS node [26]. The collected data contained the vehicle
speed, throttle and brake commands, motor RPM and gear.
To measure the road slope, a MTi-100 IMU, from Xsens,
was used. The sampling frequency for all measurements
is 5 Hz. The following datasets were collected:

• DS1 - Regular driving by a human - 4500 samples;
• DS2 - Step input applied through the ROS node - 160

samples.

The model was trained to predict the truck speed at
instant k+1, based on the speed of the previous instant, the
previous control input u, and road slope α, as y(k+ 1) =
f(x) with x = [v(k), u(k), α(k)]. The covariance used
was a sum of the linear, squared exponential and Matérn



1/2. All the Gaussian Process trainings and predictions on
this work were performed using the CVPP1 toolbox.

The output of the model trained with dataset DS1 can
be seen on Fig. 3. The model follows the system real
behavior, with low variance, due to the good amount of
data samples.
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Figure 3. Estimated speed for DS1.

For the dataset DS2, the speed and control signal can be
seen on Fig. 4, where the actuator delay is clearly visible.
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Figure 4. Speed and control input for training set DS2.

It is possible to note on Fig. 5, that even with a small
training set, the model is accurate, as the system step
response is smooth.
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Figure 5. Estimated speed for DS2.

In order to verify the generalization capabilities of the
model, the data from DS1 was applied to the model trained
with DS2, and even with few data samples and a small part
of the input space excited on DS2, it is able to reproduce
the DS1 behavior with good accuracy.

1https://bitbucket.org/vguizilini/cvpp

Figure 6. DS1 data applied to model trained with DS2.

To assess the model performance, the n-fold cross-
validation technique was used with 10 folds (n = 0). The
performance was measured using the Root Mean Square
Error (RMSE) and the more probabilistic-suited method
Negative Log Probability Density (NLPD) [12], [16]. The
results are listed on Table I. It can be noted that both
models describe the system behavior with small errors,
and the model trained with the bigger dataset shows more
confidence about the predictions, which can be noted by
the NLPD measurement.

Table I
PERFORMANCE OF THE TRAINED MODELS.

RMSE NLPD
DS1 0.004 -2.17
DS2 0.011 -1.32

DS1-DS2 0.012 -1.14

B. Predictive Control of the Truck Velocity

The model obtained through the dataset DS2 was used
to perform the controller architecture depicted in Fig. 2.
The control inputs u(k + j) are obtained by minimizing
the cost function (7), with δ(j) = 1 and λ(j) = 0.3 for
all j, and under the constraints:

0 ≤ y(k + j) ≤ 20

−0.5 ≤ u(k + j) ≤ 0.6

σ(k + j) ≤ 0.2

(8)

Besides the constraints due to system limitations, a hard
constraint on variance value σ ≤ 0.2 has been defined in
order to avoid unpleasant responses that are consequence
of model uncertainties.

It was proved in [27] that a suitably long horizon is
adequate to ensure stability on a receding horizon scheme,
even when dynamics and/or cost change in real-time. In
this work, it was used a small horizon of 2 time-steps to
test our controller in hard situations.

To verify the performance of the controller, a simulation
of the system was conducted using the model trained
with the dataset DS1 to simulate the truck response. The
reference signal was created artificially such that there are
two sudden change on the set-point: at k = 4 seconds, it
goes from zero to 10 m/s, and at k = 40 seconds, it goes
from 10 to 5 m/s. On the first test, the road was considered
flat. The response of the controller for this first test, as well



as the input signal sequence applied can be seen on Fig.
7. After the settling time, the controller was able to follow
the reference with less than 2.5% error.

Figure 7. System output and control signal for a flat road.

Two other tests were executed, with the slope of the
road set to a steep condition (10%). On Fig. 8 and 8 it
is shown the system output running uphill and downhill
respectively. Even on this hard conditions, the control is
able to track the reference. On the uphill case, it takes
more time to gain speed, due to the big mass of the vehicle
and saturation of the control signal. Also due to the vehicle
weight, on the downhill case, after the vehicle catch up the
reference, it spends most of the time braking to maintain
the speed.

V. CONCLUSIONS

In this work, a Model Predictive Controller with Gaus-
sian Process model is applied to undertake the longitudinal
control of a long-haul road truck. A Gaussian Process
Model of the truck longitudinal dynamics were learned
from real data. The obtained model achieved high accuracy
also provided information about its confidence on the
predictions, which can be used to achieve a more robust
control or even guide collection of new data to improve the
model. Simulations of the closed-loop system presented
a very good performance of the MPC controller, even
at extreme conditions, like small prediction horizon and
very steep roads, showing that Gaussian Process models
offer an attractive possibility for control design. Some
modifications can be applied to the principle presented
in this work to better suit it for practical application, like
accelerating computations and online adjusting the model.

Figure 8. System output and control signal for an uphill run.

Figure 9. System output and control signal for a downhill.

The extensions, and the application of the technique on a
real truck, are planned as future work.
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