
c© Copyright by Martin Pelikan, 2002

BAYESIAN OPTIMIZATION ALGORITHM:
FROM SINGLE LEVEL TO HIERARCHY

BY

MARTIN PELIKAN

DIPL., Comenius University, 1998

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2002

Urbana, Illinois

Abstract

There are four primary goals of this dissertation. First, design a competent optimization algorithm

capable of learning and exploiting appropriate problem decomposition by sampling and evaluating

candidate solutions. Second, extend the proposed algorithm to enable the use of hierarchical

decomposition as opposed to decomposition on only a single level. Third, design a class of difficult

hierarchical problems that can be used to test the algorithms that attempt to exploit hierarchical

decomposition. Fourth, test the developed algorithms on the designed class of problems and several

real-world applications.

The dissertation proposes the Bayesian optimization algorithm (BOA), which uses Bayesian

networks to model the promising solutions found so far and sample new candidate solutions. BOA

is theoretically and empirically shown to be capable of both learning a proper decomposition of

the problem and exploiting the learned decomposition to ensure robust and scalable search for the

optimum across a wide range of problems. The dissertation then identifies important features that

must be incorporated into the basic BOA to solve problems that are not decomposable on a single

level, but that can still be solved by decomposition over multiple levels of difficulty. Hierarchical

BOA extends BOA by incorporating those features for robust and scalable optimization of hier-

archically decomposable problems. A class of problems called hierarchical traps is then proposed

to test the ability of optimizers to learn and exploit hierarchical decomposition. Hierarchical BOA

passes the test and is shown to solve hierarchical traps and other hierarchical problems in a scalable

manner. Finally, the dissertation applies hierarchical BOA to two important classes of problems

of statistical physics and artificial intelligence—Ising spin-glass systems and maximum satisfiabil-

ity. Experiments show that even without requiring any prior problem-specific knowledge about

the structure of the problem at hand or its properties, hierarchical BOA is capable of achieving

comparable or better performance than other state-of-the-art methods specializing in solving the

examined classes of problems.

iii

To my parents, Jaroslava and Peter.

iv

Acknowledgments

There are many people to whom I am grateful for helping to get all the way to finishing up my

dissertation. Foremost, I would like to thank my parents and the rest of my closest family, my

brother Juraj, my sister Daniela and her husband Vlasto, and my godparents Dušanko and Elenka;

I am grateful for having the family I have, it’s perfect. I would also like to thank Angelica L.

Farnum, who I take as a part of my family, for standing beside me along the way.

I wouldn’t be here if it wasn’t for my thesis advisor, David E. Goldberg, who gave me this great

opportunity of working with him and other members of the Illinois Genetic Algorithms Laboratory.

Dave Goldberg is a great teacher and a bottomless source of inspiration, and the Illinois Genetic

Algorithms Laboratory is a wonderful place. I don’t know how Dave Goldberg does it (and I don’t

know if he knows), but the laboratory is always full of great people. I would like to thank all the

members and visitors of the lab that I had the opportunity of working with: Laura Albert, Leyla

Babayeva, Jacob Borgerson, Martin Butz, Erick Cantú-Paz, Jian-Hung Chen, Ying-Ping Chen,

Ross Gadient, Kathryn Hawley, Nazan Khan, Dimitri Knjazew, Alex Kosorukoff, Ruth Kwon,

Jeffrey Leesman, Michelle Lipinski, Fernando Lobo, Mike Magin, Masaharu Munetomo, Felipe D.

Padilla, Prasanna V. Parthasarathy, Franz Rothlauf, Kumara Sastry, Abhishek Sinha, Nathan Sis,

Ravi Srivastava, Brad Sutton, Kurian Tharakunnel, Shigeyoshi Tsutsui, Clarissa Van Hoyweghen,

Andy Vaughn, and Tian-Li Yu. I am particularly thankful to Martin Butz, Fernando Lobo, Erick

Cantú-Paz, Franz Rothlauf, and Kumara Sastry.

I met several great friends in Illinois, many of whom were already listed above. My friends

helped me a lot in getting this done and having fun at the same time, and I hope that we will

continue to be friends for the times to come. In addition to the friends from the lab, I would like

to thank Amanda Hinkle, Samarth Swarup, Nicole Swiss, and Dav Zimak.

I would also like to thank my dissertation committee, Dave Goldberg, Mehdi Harandi, Sylvian

v

Ray, and Dan Roth, for agreeing to serve on my committee and giving me valuable comments “from

the other side”. I am grateful for their help, discussions, and comments.

I am grateful to Vladimı́r Kvasnička and Jǐŕı Posṕıchal, who I worked with at the Department of

Mathematics of the Slovak Technical University. Vladimı́r Kvasnička and Jǐŕı Posṕıchal awakened

my interest in genetic algorithms and helped me take my first steps in the field. I would also like to

thank Heinz Mühlenbein who taught and influenced me a lot during my stay in the group Adaptive

Systems at the German National Center for Information Technology (GMD), two years prior to my

arrival in Illinois.

A number of researchers contributed to this dissertation by providing valuable comments, an-

swering my silly questions, and sharing their views. To name a few, I acknowledge Peter Bosman,

David Chickering, Georges Harik, David Heckerman, Hillol Kargupta, Pedro Larrañaga, Thilo

Mahnig, Bart Naudts, Jǐŕı Očenášek, Josef Schwarz, Dirk Thierens, and Richard Watson.

The work was sponsored by the Air Force Office of Scientific Research, Air Force Materiel

Command, USAF, under grants F49620-97-1-0050 and F49620-00-0163. Research funding for this

project was also provided by a grant from the U.S. Army Research Laboratory under the Federated

Laboratory Program, Cooperative Agreement DAAL01-96-2-0003, and a grant from the National

Science Foundation under grant DMI-9908252. Some of the experiments were done using the

computational facilities of the National Center for Supercomputing Applications (NCSA) at the

University of Illinois at Urbana-Champaign.

The US Government is authorized to reproduce and distribute reprints for Government purposes

notwithstanding any copyright notation thereon. The views and conclusions contained herein are

those of the author and should not be interpreted as necessarily representing the official policies

or endorsements, either expressed or implied, of the Air Force Office of Scientific Research, the

National Science Foundation, or the U.S. Government.

vi

Table of Contents

Introduction . 1
Thesis Objectives . 2
Road Map . 3

Chapter 1 From Genetic Algorithms to Probabilistic Models 8
1.1 Black-box Optimization . 9
1.2 Genetic Algorithms . 10
1.3 Simulation: Onemax and Population-wise Uniform Crossover 12

1.3.1 Simulation . 13
1.4 Population-wise Uniform Crossover as a Probabilistic Model 15
1.5 What if Single Bits are Misleading? . 17

1.5.1 Building Blocks . 18
1.5.2 Building Blocks and Nonlinearities in Probabilistic Models 19
1.5.3 Some Additional Requirements . 20
1.5.4 Decompositional Bias and Linkage Learning 21

1.6 Summary . 22

Chapter 2 Probabilistic Model-Building Genetic Algorithms 24
2.1 General PMBGA Procedure . 25
2.2 Motivation . 26

2.2.1 Onemax and Probabilistic Uniform Crossover 26
2.2.2 Composed Traps and Probabilistic Building-Block Crossover 27

2.3 Discrete Variables . 31
2.3.1 No Interactions . 31
2.3.2 Bivariate Interactions . 33
2.3.3 Multivariate Interactions . 36

2.4 Other Representations . 39
2.4.1 Real-valued Variables . 39
2.4.2 Computer Programs . 46

2.5 Summary . 48

Chapter 3 Bayesian Optimization Algorithm . 50
3.1 Description of BOA . 51
3.2 Bayesian Networks . 52
3.3 Learning Bayesian Networks . 55

3.3.1 Scoring Metric . 56
3.3.2 Search Procedure . 59

vii

3.4 Sampling a Bayesian Network . 61
3.5 Initial Experiments . 63

3.5.1 Test Functions . 63
3.5.2 Experimental Methodology . 64
3.5.3 BOA Performance . 65
3.5.4 BOA vs. GA and Hill Climber . 66

3.6 Summary . 70

Chapter 4 Scalability Analysis . 72
4.1 Time Complexity and the Number of Evaluations . 73
4.2 Background of GA Population-Sizing Theory . 74

4.2.1 Having an Adequate Initial Supply of BBs . 74
4.2.2 Deciding Well Between BBs and their Competitors 75
4.2.3 Genetic Drift . 77

4.3 Population Sizing in BOA . 80
4.3.1 Road Map to BOA Population-Sizing Model 81
4.3.2 Finding a Proper Model: The Good, the Bad, and the Ugly 82
4.3.3 Assumptions and Notation . 83
4.3.4 Edge Additions and the Critical Population Size 85
4.3.5 Block Probabilities After Binary Tournament 88
4.3.6 General Two-Bit Case . 91
4.3.7 General Case: Multiple Parents of X1 Exist 98
4.3.8 Getting the Frequencies Right . 101
4.3.9 Critical Population Size: Empirical Results 105
4.3.10 Summary of Population Sizing in BOA . 106

4.4 Background of GA Time-to-Convergence Theory . 108
4.5 Time to Convergence in BOA . 109

4.5.1 Uniform Scaling . 109
4.5.2 Exponential Scaling . 111

4.6 How Does BOA Scale Up? . 112
4.7 Empirical Verification of BOA Scalability . 114

4.7.1 Uniform Scaling . 114
4.7.2 Exponential Scaling . 117

4.8 Summary . 118

Chapter 5 The Challenge of Hierarchical Difficulty 121
5.1 Hierarchical Decomposition . 122
5.2 Computer Design, von Neumann, and Three Keys to Hierarchy Success. 123
5.3 The Design of Challenging Hierarchical Problems . 126

5.3.1 Example: Tobacco Road . 126
5.3.2 Hierarchically Decomposable Functions . 130
5.3.3 Another Example: Royal Road . 131
5.3.4 Yet Another Example: Hierarchical If-and-Only-If (HIFF) 133
5.3.5 Hierarchical Trap Functions: The Ultimate Challenge 134

5.4 Summary . 138

viii

Chapter 6 Hierarchical Bayesian Optimization Algorithm 140
6.1 Proper Decomposition and Chunking . 141

6.1.1 Chunking Revisited . 141
6.1.2 Local Structures in Bayesian Networks . 143
6.1.3 Default Tables . 144
6.1.4 Decision Trees and Graphs . 146

6.2 Preservation of Alternative Candidate Solutions . 154
6.2.1 Background of Niching . 154
6.2.2 The Method of Choice: Restricted Tournament Replacement (RTR) 160

6.3 Hierarchical BOA . 161
6.4 Experiments . 162

6.4.1 Methodology . 163
6.4.2 Results . 163

6.5 Scalability of hBOA on Hierarchical Problems . 164
6.6 How Would Other Methods Scale Up? . 166
6.7 Summary . 168

Chapter 7 Hierarchical BOA in the Real World 171
7.1 Ising Spin Glasses . 172

7.1.1 Methodology . 173
7.1.2 Results . 174
7.1.3 Discussion . 174
7.1.4 Solving Spin Glasses using hBOA + Local Search 177
7.1.5 From 2D to 3D . 178

7.2 Maximum Satisfiability (MAXSAT) . 179
7.2.1 Methodology . 180
7.2.2 Other Methods Included in Comparison . 181
7.2.3 Tested Instances . 182
7.2.4 Results on Random 3CNF Satisfiable Instances 184
7.2.5 Results on Combined-Graph Coloring . 185
7.2.6 Discussion . 187

7.3 Summary . 188

Chapter 8 Future Work . 191
8.1 Enhancing the Efficiency . 191

8.1.1 Parallelization . 192
8.1.2 Hybridization . 193
8.1.3 Time Continuation . 193
8.1.4 Prior Knowledge Utilization . 194
8.1.5 Fitness Evaluation Relaxation . 196
8.1.6 Incremental and Sporadic Model Building . 197

8.2 Extending the Applicability . 197
8.2.1 Multiobjective Optimization . 198
8.2.2 From Binary Strings to Computer Programs 199

8.3 Developing Additional Theory . 200

ix

Chapter 9 Conclusions . 202
9.1 What Has Been Done . 202
9.2 Main Conclusions . 204

Bibliography . 206

Index . 223

Vita . 226

x

List of Tables

1.1 Common GA terminology. 12

3.1 Example conditional probability table . 53

4.1 Proportions of the solutions on the two-bit onemax before and after binary tournament 82
4.2 Factors influencing the population sizing in BOA . 108
4.3 Increase in the number of evaluations of BOA and the stochastic hill climber on the

composed trap of order 5 . 113
4.4 Summary of the number of evaluations required by BOA 114

6.1 Example conditional probability table . 144
6.2 Default table reducing the number of conditional probabilities by 3 145
6.3 Default table reducing the number of conditional probabilities by 6 145

7.1 An overview of MAXSAT instances used in the experiments 183
7.2 Hierarchical BOA+GSAT on WalkSAT-hard instances of MAXSAT 186
7.3 Hierarchical BOA on Satz-hard instances of MAXSAT 187

xi

List of Figures

1.1 Example two-parent crossover operators—one-point and uniform crossover. 11
1.2 Simulation of the GA with population-wise uniform crossover on onemax 14
1.3 Simulation of the GA with probabilistic uniform crossover on onemax 16
1.4 Trap function of order 5 . 18

2.1 Pseudo-code of the general PMBGA procedure . 25
2.2 Graphical model with no interactions . 32
2.3 Graphical models with some pairwise interactions . 34
2.4 Graphical models with multivariate interactions used in ECGA and BOA 38
2.5 Product of one-dimensional normal distributions used in SHCLVND 40
2.6 Joint normal distribution . 42
2.7 Joint normal kernels distributions . 43
2.8 Model using adaptive intervals . 45
2.9 Histogram models . 46
2.10 Probabilistic model of a program used in PIPE . 47

3.1 Bayesian optimization algorithm (BOA) . 51
3.2 Example Bayesian network structure . 53
3.3 Good models; problems with no interactions and separable problems of order 4 . . . 54
3.4 Algorithm for learning the structure of Bayesian networks 60
3.5 Example construction of a Bayesian network . 61
3.6 Algorithm for computing the ancestral ordering of the nodes in a Bayesian network. 62
3.7 Algorithm for sampling the Bayesian network . 62
3.8 BOA on onemax . 65
3.9 BOA on the composed trap of order 5 and the composed deceptive function of order 3 66
3.10 BOA vs. GA and the stochastic hill climber on onemax 67
3.11 BOA vs. GA and the stochastic hill climber on the composed trap of order 5 68
3.12 BOA vs. GA and the stochastic hill climber on the composed deceptive of order 3 . 69

4.1 Domino convergence for exponentially scaled subproblems 78
4.2 Making a decision between adding and not adding an edge 86
4.3 Critical population size with respect to the entropy difference. 88
4.4 Pairwise frequencies and their approximation with respect to noise 91
4.5 Partitioning the population according to the parents of a variable 100
4.6 An illustration of bounding the area under the tails of the normal distribution. . . . 102
4.7 Critical population size for onemax and the composed trap of order 5 for BIC metric 106
4.8 Effects of increasing the selection pressure on the critical population size 107

xii

4.9 Number of generations until convergence of BOA on onemax and the composed trap
of order 5 . 111

4.10 Verification of BOA theory: BOA on onemax . 115
4.11 Verification of BOA theory: BOA on the composed trap of order 5 116
4.12 Verification of BOA theory: BOA on the composed deceptive function of order 3 . . 117
4.13 Verification of BOA theory: BOA on the exponentially scaled deceptive problem . . 118

5.1 Hierarchical structure of a university . 122
5.2 Von Neumann’s decomposition of the general-purpose computing machine 124
5.3 Goldberg’s tobacco road function . 127
5.4 Folded trap of order 6 . 128
5.5 The three HDF components comprising Goldberg’s tobacco road 131
5.6 The three HDF components comprising Mitchell’s royal road 132
5.7 The three HDF components comprising Watson’s HIFF function 134
5.8 The three components comprising the hierarchical trap of order 3 136

6.1 Decision tree and graph encoding the conditional probabilities 147
6.2 Merge and split operators for decision graphs . 152
6.3 Algorithm for constructing the Bayesian network with decision graphs 153
6.4 Hierarchical Bayesian optimization algorithm . 162
6.5 Hierarchical BOA on hierarchical traps . 164
6.6 Hierarchical BOA on Watson’s HIFF . 165
6.7 Hierarchical BOA finds and maintains many global optima 166

7.1 Example two-dimensional Ising spin-glass system . 173
7.2 Hierarchical BOA on 2D Ising spin glasses . 175
7.3 Hierarchical BOA + hill climber on 2D Ising spin glasses 178
7.4 Hierarchical BOA + hill climber on 3D Ising spin glasses 179
7.5 Hierarchical BOA+GSAT on MAXSAT for random 3-CNF from the phase transition 184
7.6 Hierarchical BOA+GSAT vs. GSAT and WalkSAT on MAXSAT for random 3-CNF

from the phase transition . 185

xiii

List of Abbreviations

BB Building block.

BD Bayesian-Dirichlet (metric).

BIC Bayesian information criterion.

BMDA Bivariate marginal distribution algorithm.

BOA Bayesian optimization algorithm.

cGA Compact genetic algorithm.

CNF Conjunctive normal form.

DHC Discrete hill climber based on one-bit flips.

EBNA Estimation of Bayesian networks algorithm.

ECGA Extended compact genetic algorithm.

EDA Estimation of distribution algorithm.

EGNA Estimation of Gaussian networks algorithm.

FDA Factorized distribution algorithm.

GA Genetic algorithm.

GSAT Discrete hill climber for MAXSAT (one-bit flip).

hBOA Hierarchical Bayesian optimization algorithm.

HC Hill climber.

xiv

HIFF Hierarchical if-and-only-if.

H-PIPE Hierarchical PIPE.

IDEA Iterated density estimation algorithm.

LFDA Learning factorized distribution algorithm.

MAXSAT Maximum satisfiability.

MIMIC Mutual-information-maximizing input clustering.

PBIL Population-based incremental learning.

PIPE Probabilistic incremental program evolution.

PMBGA Probabilistic model-building genetic algorithm.

SHCLVND Stochastic hill climbing with learning by vectors of normal distributions.

UMDA Univariate marginal distribution algorithm.

xv

Introduction

A general optimization problem may be defined by specifying (1) the set of all potential solutions to

the problem and (2) a measure for evaluating the quality of each candidate solution. The task is to

find the solution of highest quality. Despite the existence of specialized techniques for solving highly

restricted classes of problems efficiently—such as linear and quadratic programming—it might be

impossible (or impractical) to apply these techniques for two reasons. First, the problem that we are

trying to solve might not fit any of the restricted classes of problems for which solutions are known.

Second, even if the problem belongs to one of these restricted classes, it might be intractable or

impractical to acquire sufficient knowledge to classify the problem properly. This gives rise to the

growing interest in the design of adaptive optimization techniques capable of automatic discovery

and exploitation of problem regularities to achieve efficient and scalable optimization of a broad

class of important real-world problems (Kargupta, 1995).

Many adaptive optimization techniques use problem decomposition as the basic mechanism

for reducing problem complexity. The basic idea of using problem decomposition for simplifying

a problem is rather simple; if the problem can be decomposed into tractable subproblems, its

difficulty can be significantly reduced, and instead of solving one big problem it is sufficient to

approach several smaller, individually tractable subproblems. But how can we exploit problem

decomposition in optimization?

Genetic and evolutionary computation (GEC) offers one class of methods capable of doing that

by evolving a population of candidate solutions to the given problem using mechanics inspired by

natural evolution and genetics. Specifically, the search in genetic and evolutionary algorithms is

guided by two basic mechanisms: (1) selection and (2) variation. Selection biases the search to-

ward high-quality solutions by making multiple copies of better solutions at the expense of their

inferior competitors. Variation operators ensure exploration by creating new solutions based on

1

the promising solutions found so far. Two variation operators are common in current GEC: (1) re-

combination or crossover and (2) mutation. Recombination creates new solutions by combining

parts of promising solutions, whereas mutation perturbs promising solutions slightly. In this thesis,

the focus is on genetic algorithms (Holland, 1975; Goldberg, 1989a), which use both crossover and

mutation.

Genetic algorithms can solve problems decomposable into subproblems of bounded order in

subquadratic or quadratic time measured by the number of candidate solutions that must be

evaluated until reliable convergence to the optimum (Goldberg, Deb, & Clark, 1992; Harik, Cantú-

Paz, Goldberg, & Miller, 1997; Mühlenbein & Schlierkamp-Voosen, 1993). However, traditional

variation operators often fail at solving the given problem efficiently because they assume a fixed

decomposition regardless of the problem. In the design of competent genetic algorithms (Goldberg,

1999b)—genetic algorithms that can solve hard problems quickly, accurately, and reliably—it is

necessary that the algorithm be capable of both learning and exploiting a proper, nonmisleading

problem decomposition.

Thesis Objectives

There are four primary objectives of this thesis:

(1) Design a competent optimization algorithm capable of learning and exploiting a proper problem

decomposition by sampling and evaluating candidate solutions.

(2) Extend the proposed method to allow for the discovery and utilization of hierarchical decom-

position as opposed to decomposition on only a single level.

(3) Design a class of difficult hierarchical problems that can be used to test the algorithms that

attempt to exploit hierarchical decomposition.

(4) Test the developed algorithms on the designed class of problems and several real-world appli-

cations.

Specifically, the thesis proposes the Bayesian optimization algorithm (BOA), which uses Bayesian

networks to model promising solutions and sample new candidate solutions. Theoretical and empir-

2

ical evidence is provided to show that BOA is capable of solving hard problems decomposable into

subproblems of bounded order in a scalable manner. Additionally, hierarchical BOA is proposed

that extends BOA by incorporating important mechanisms necessary for scalable optimization

of problems that cannot be decomposed into tractable subproblems on a single level but can be

solved by a repeated decomposition down a number of levels. Hierarchical processing improves the

algorithm and represents another useful strategy that can further reduce complexity of difficult

problems.

A class of problems called hierarchical traps is then proposed to test the ability of optimizers

to learn and exploit hierarchical decomposition. Hierarchical BOA passes the test and is shown to

solve hierarchical traps and other hierarchical problems in a scalable manner. Finally, the thesis

applies hierarchical BOA to two important classes of real-world problems from statistical physics

and artificial intelligence. The experiments show that even without requiring any prior problem-

specific knowledge about the structure of the problem or its properties, hierarchical BOA is capable

of achieving competitive or better performance than other state-of-the-art methods specializing in

solving the examined classes of problems.

Road Map

The thesis is divided into nine chapters. The first two chapters introduce genetic algorithms,

provide motivation for the development of competent genetic algorithms, and introduce the basic

concepts of probabilistic model-building genetic algorithms (PMBGAs). Chapters 3 and 4 present

and analyze the Bayesian optimization algorithm (BOA), which is theoretically and empirically

shown to solve problems of bounded difficulty in a scalable manner. Chapters 5 and 6 motivate the

use of hierarchical decomposition for complexity reduction, propose a class of challenging problems

for hierarchical optimizers, and extend the original BOA to solve difficult hierarchical problems.

The thesis closes by presenting experimental results on two classes of real-world problems, discussing

interesting topics for future work, and providing the conclusions. The following subsections present

the content of each chapter in greater detail.

3

Chapter 1: From Genetic Algorithms to Probabilistic Models

Chapter 1 describes the basic genetic algorithm (GA) procedure and argues that in the design of

competent black-box optimization techniques based on problem decomposition, there are several

important lessons to learn from GA research. The chapter presents a simple GA simulation by

hand to build some intuition regarding the dynamics of GAs. Additionally, the simulation provides

motivation for the use of probabilistic models in guiding exploration more generally. The limita-

tions of standard genetic algorithm approaches are then identified and discussed in the context of

probabilistic and nonprobabilistic variation operators.

Chapter 2: Probabilistic Model-Building Genetic Algorithms

Chapter 2 surveys probabilistic model-building genetic algorithms, which guide exploration by

building a probabilistic model of promising solutions and sampling the built model to generate

new candidate solutions. Basic definitions are provided to present the algorithms from this class

within a unified framework. The chapter focuses on methods working in a discrete domain; other

representations are discussed briefly.

Chapter 3: Bayesian Optimization Algorithm

Chapter 3 proposes the Bayesian optimization algorithm (BOA), which uses Bayesian networks to

learn a proper decomposition of the problem and sample new candidate solutions.

Next, the chapter describes the methods for learning and sampling multiply connected Bayesian

networks. Both structural and parametrical learning are considered. The chapter finishes by

presenting initial experimental results indicating good scalability of BOA.

Chapter 4: Scalability Analysis

To support the promising empirical results, Chapter 4 develops a scalability theory for BOA. As a

measure of BOA’s computational complexity, the chapter considers the total number of candidate

solutions that must be evaluated until reliable convergence to the optimum. The total number of

evaluations is computed by estimating an upper bound on the sufficient population size and an

expected number of generations until convergence.

4

It turns out that if a problem can be decomposed into subproblems of bounded order, the number

of evaluations until BOA converges to the optimum with high confidence grows subquadratically

or quadratically with the size of the problem. The theory is verified by a number of experiments.

Chapter 5: Challenge of Hierarchical Difficulty

Chapter 5 discusses the use of hierarchical decomposition as opposed to decomposition on only

a single level and argues that hierarchical decomposition is a powerful tool for reducing problem

complexity. The chapter identifies important features that must be incorporated into the Bayesian

optimization algorithm to allow the algorithm to exploit hierarchical decomposition effectively:

(1) proper decomposition, (2) chunking, and (3) preservation of alternative solutions.

Next, the chapter proposes a class of challenging hierarchical problems called hierarchical traps.

Hierarchical traps bound the class of problems solvable by optimization algorithms capable of

automatic discovery and exploitation of hierarchical decomposition and can be used as a test

bed for those algorithms. Hierarchical traps are extremely difficult if they are approached on a

single level or with local operators; however, with the proper use of hierarchical decomposition,

hierarchical traps can be solved in low-order polynomial time by evaluating only a subquadratic

number of candidate solutions.

Chapter 6: Hierarchical Bayesian Optimization Algorithm

Chapter 6 first describes how to incorporate the important features of a successful hierarchical

optimizer into BOA. Decomposition and chunking are incorporated by using local structures that

ensure compact representation of Bayesian networks for problems with high-order and complex in-

teractions. Preservation of alternative solutions is guaranteed by using a procedure called restricted

tournament replacement for updating the population of candidate solutions using newly generated

solutions.

Bayesian networks with local structures and restricted tournament replacement form the basis

of the hierarchical Bayesian optimization algorithm (hBOA). Hierarchical BOA is shown to solve

the proposed class of challenging hierarchical problems in a scalable manner.

The scalability theory of Chapter 4 is then extended to provide a bound on the number of

5

evaluations required for solving hierarchical problems, which is again verified with empirical results.

Chapter 7: Hierarchical BOA in the Real World

Chapter 7 applies hierarchical BOA to two important classes of real-world problems: (1) two- and

three-dimensional Ising spin-glass systems, and (2) maximum satisfiability (MAXSAT).

First, the chapter considers two-dimensional Ising spin-glass systems with cyclic boundary con-

ditions. The scalability of hierarchical BOA is analyzed by testing the algorithm on a number of

randomly generated spin-glass instances of varying problem sizes. The performance of hierarchical

BOA is compared to that of state-of-the-art methods for spin-glass optimization. Next, local search

is incorporated into hierarchical BOA to further improve its performance and the results with and

without local search are compared. Finally, hierarchical BOA with local search is applied to an

array of three-dimensional spin-glass systems. The performance of hierarchical BOA with local

search is shown to be competitive or better than that of the state-of-the-art methods. Further-

more, hierarchical BOA with local search is shown to provide a scalable solution to those spin-glass

instances that cannot be solved by other methods included in the comparison.

Second, the chapter considers instances of maximum satisfiability (MAXSAT). A hybrid com-

bining hierarchical BOA with local search is tested on a number of difficult MAXSAT instances.

Again, the scalability of the algorithm is analyzed by varying the problem size and the performance

of hierarchical BOA is compared to that of state-of-the-art methods for solving MAXSAT. Since

MAXSAT is NP-complete, it can be expected that the time complexity of hierarchical BOA on

MAXSAT grows exponentially. Nonetheless, hierarchical BOA is shown to provide a robust solu-

tion to a wide range of MAXSAT instances and outperform other algorithms for solving MAXSAT

in many cases.

Chapter 8: Future Work

Chapter 8 discusses important topics of future research. There are three important lines of future

research:

(1) Enhance the efficiency. Make BOA and hierarchical BOA more efficient by parallelization,

evaluation relaxation, hybridization, time continuation, and utilization of prior problem-specific

6

knowledge.

(2) Extend the applicability. Extend the applicability of hierarchical BOA by combining it

with advanced techniques for multiobjective optimization and applying hierarchical BOA to

problems where the candidate solutions are not represented by fixed-length strings over a finite

alphabet.

(3) Extend the theory. Extend the developed scalability and convergence theory of BOA and

hierarchical BOA.

Chapter 9: Conclusions

Chapter 9 concludes the thesis and lists its most important consequences.

7

Chapter 1

From Genetic Algorithms to
Probabilistic Models

Genetic algorithms (GAs) (Holland, 1975; Goldberg, 1989a) are stochastic optimization methods

inspired by natural evolution and genetics. Over the last few decades, genetic algorithms have been

successfully applied to many problems of business, engineering, and science (Goldberg, 1999a).

Because of their operational simplicity and wide applicability, genetic algorithms are now becoming

an increasingly important area of computational optimization.

There are several concepts of genetic algorithms that we will use in the design of a competent

black-box optimization method capable of exploiting problem decomposition: population-based

search, exploration by combining bits and pieces of promising solutions, and facetwise genetic

algorithm theory. The purpose of this chapter is to review the basic GA procedure and build some

intuition regarding the dynamics of GAs. Additionally, the chapter shows that traditional variation

operators of genetic algorithms can be approximated by learning and sampling a probabilistic model

of promising solutions. Finally, the chapter identifies important conditions of GA success and

discusses limitations of traditional GAs.

The chapter starts by discussing the general form of a black-box optimization problem and

the need for a bias to solve such problems efficiently. Section 1.2 describes the basic genetic

algorithm procedure as one of the representatives of black-box optimization techniques. Section 1.3

presents a sample GA run to build some intuition regarding the mechanics and limitations of

genetic algorithms. The simulation motivates the use of probabilistic recombination, which replaces

traditional recombination by building a probabilistic model of promising solutions and sampling

8

the learned model to generate new candidate solutions. Section 1.4 presents one approach to

probabilistic recombination and relates the presented approach to the traditional one. Section 1.5

discusses selectorecombinative search and its limitations. Additionally, the section defines a class

of problems of bounded difficulty that challenge traditional GAs. Finally, Section 1.6 summarizes

the chapter.

1.1 Black-box Optimization

An optimization problem may be defined by specifying (1) the set of all potential solutions to the

problem and (2) a measure to evaluate performance of each candidate solution with respect to

the objective. The goal is to find a solution or a set of solutions that perform best according to

the specified measure. For example, in the maximum satisfiability of logic formulas in conjunctive

normal form, each candidate solution can be represented by a list of truth values for all variables

and the quality of a solution can be defined as the number of satisfied clauses. In the design of an

aircraft wing, a solution can be represented by a set of parameters that specify the shape of the

wing and the performance of each parameter set can be determined by an experiment in a wind

tunnel. In the design of an algorithm for playing chess, a solution can be represented by a set of

condition-action rules, and the performance of each such set can be defined as the portion of games

won against other candidate strategies.

In black-box optimization, there is no information about the relation between the performance

measure and the semantics of the solutions. The only way of learning something about the problem

at hand is to sample new candidate solutions and evaluate them. The task of finding the best solution

to a problem that we know nothing about is extremely difficult. To illustrate the difficulty of black-

box optimization, imagine you are asked to implement a program in an unknown programming

language given only the syntax of the language and a procedure that evaluates how good each valid

program is.

Black-box optimization procedures iteratively sample candidate solutions and use the results

of the evaluation of those candidate solutions to sample new solutions. There are many ways to

sample new candidate solutions. A hill climber, for instance, explores the neighborhood of the

current best candidate solution by perturbing the solution in some way. If the perturbations reveal

9

a candidate solution that is better than the current one, the better solution serves as the starting

point for further exploration. The way in which a particular optimization method samples new

candidate solutions and exploits the result of the evaluation of those new solutions limits the class

of problems that the method can solve in an efficient manner. For instance, using local operators

in the hill climber limits the applicability of the algorithm to those problems that contain only a

few basins of attraction, or those problems where an approximate location of the global optimum

is known in advance.

1.2 Genetic Algorithms

Genetic algorithms (GAs) (Holland, 1975; Goldberg, 1989a; Mitchell, 1996) approach black-box

optimization by evolving a population of candidate solutions with the operators inspired by natural

evolution and genetics. Maintaining a population of solutions, as opposed to a single solution, has

several advantages. Using a population allows a simultaneous exploration of multiple basins of

attraction. Additionally, a population allows for statistical decision making based on the entire

sample of promising solutions even when the evaluation procedure is affected by external noise.

Genetic algorithms pose no significant prior restrictions on the representation of candidate so-

lutions or the performance measure. Representations can vary from binary strings to vectors of real

numbers, to permutations, to production rules, to schedules, and to program codes. Performance

measures can be based on a computer procedure, a simulation, an interaction with a human, or

some combination of the above. Additionally, evaluation of each candidate solution can be affected

by external noise. Nonetheless, for the sake of simplicity, the rest of this chapter assumes that solu-

tions are represented by binary strings of fixed length and that the performance of each candidate

solution is represented by a real number called fitness. The task is to find the binary string with

the highest fitness.

The first population of candidate solutions is usually generated randomly with a uniform dis-

tribution over all possible solutions. Each iteration starts by selecting a set of promising solutions

from the current population based on the performance of each solution. Various selection operators

can be used, but the basic idea of all selection methods is the same—make more copies of solutions

that perform better at the expense of solutions that perform worse. Two selection methods will be

10

010100011 001100

000101111 100111000101111 001100

010100011 100111

(a) One-point crossover.

000101111001100 010100111001110

010100011100111 010100011100111

(b) Uniform crossover.

Figure 1.1: An illustrative example of two common two-parent crossover operators. In one-point
crossover, the tails are exchanged after a randomly chosen position. In uniform crossover, the bits
on each position are exchanged with probability 50%.

used in this thesis: tournament selection and truncation selection. Tournament selection iteratively

selects one solution at a time by first choosing a random subset of candidate solutions from the

current population and then selecting the best solution out of this subset. Random tournaments

are repeated until there are sufficiently many solutions in the selected population. The size of the

tournaments determines selection pressure—the larger the tournaments, the higher the pressure on

the quality of each solution. Truncation selection selects the best 1/s of the current population,

where s determines selection pressure. To select a population of the same size as the population

before selection is, s copies of selected solutions can be created.

Once the set of promising solutions has been selected, new candidate solutions are sampled

by applying recombination (crossover) and mutation to the promising solutions. Recombination

combines subsets of promising solutions by exchanging some of their parts; mutation perturbs the

recombined solutions slightly to explore their immediate neighborhood. Most of the commonly

used crossover operators combine partial solutions between pairs of promising solutions with a

specified probability. For example, one-point crossover first randomly selects a single position in

the two strings and exchanges the bits on all the positions after the selected one (see Figure 1.1(a)).

On the other hand, uniform crossover exchanges bits on each position with probability 50% (see

Figure 1.1(b)). For binary strings the so-called bit-flip mutation is usually used. Bit-flip mutation

proceeds by flipping each bit with a fixed probability. The probability of flipping each bit is quite

small, so only small changes are expected to occur. Recombination is the primary source of variation

in most GAs; these GAs are often referred to as selectorecombinative GAs.

After applying crossover and mutation to the set of promising solutions, the population of

new candidate solutions replaces the original one and the next iteration is executed, unless the

11

Term Alternative name(s)
candidate solution individual, chromosome, string
decision variable variable, locus
value of decision variable bit, allele
performance function fitness function
performance value fitness, fitness value
population of promising solutions, S(t) parent population, parents, selected solutions
population of new solutions, O(t) offspring population, offspring
iteration generation

Table 1.1: Common GA terminology.

termination criteria are met. For example, the run can be terminated when the population converges

to a singleton, the population contains a good enough solution, or a bound on the number of

iterations has been reached.

In explaining and discussing dynamics and limitations of GAs, several additional terms will

be used. A partial solution denotes specific bits on a subset of string positions. Competitors of

a partial solution are all partial solutions that are specified in the same positions as the partial

solution but that differ from the partial solution in at least one of the specified bits. A partition

denotes a subset of string positions. The partition corresponding to a particular partial solution is

defined as the subset of string positions that are specified in the partial solution.

Common GA terminology is listed in Table 1.1. In the rest of the thesis, we will use terminology

consistent with that listed in the above table.

1.3 Simulation: Onemax and Population-wise Uniform Crossover

By applying selection and crossover to the population of candidate solutions, genetic algorithms can

process a large number of partial solutions in parallel. The processing of partial solutions consists

of (1) deciding between competing partial solutions in the same partition, (2) making more copies

of those partial solutions that perform better than their competitors in the same partition, and (3)

combining partial solutions to ensure effective exploration of the search space. Selection ensures

that superior partial solutions will be given more copies in the selected population. Crossover

ensures that partial solutions propagated by selection are combined to explore new regions in the

search space.

12

This section presents a simple GA simulation by hand on a onemax problem. The purpose

of presenting the simulation is twofold. First, the simulation attempts to build some intuition

regarding the processing of partial solutions in GAs. Second, the simulation motivates the use of

probabilistic models to guide the sampling of new candidate solutions in GAs.

1.3.1 Simulation

Onemax is defined as the sum of the bits in the input binary string:

fonemax(X) =
n−1∑
i=0

Xi, (1.1)

where X = (X0, . . . ,Xn−1) is the input string of length n. Onemax is a simple linear function with

the optimum in the string of all ones. The simulation considers a 5-bit onemax and a population

of size N = 6. Binary tournament selection is used to select promising solutions. Population-wise

uniform crossover is used to create new candidate solutions by shuffling the bits on each position in

the selected set of promising solutions. No mutation is used. The simulation is based on an actual

GA run.

Figure 1.2 shows the first two generations of the GA simulation. The initial population of

candidate solutions is generated at random. Next, tournament selection is applied to create a set

of promising solutions. Six tournaments take place, and the winners of these six tournaments form

the population of promising solutions. Population-wise uniform crossover is then applied to the

population of selected solutions by shuffling the bits on each position among the selected solutions.

The resulting (shuffled) set of solutions then replaces the original population.

In both generations of the simulation, the average fitness of the new population of candidate

solutions (the offspring) is greater than the average fitness of the population before selection.

The reason for the increased fitness lies in the way the GA processes the population. Since the

solutions with more ones have higher fitness than those with fewer ones, selection should increase

the number of ones in the population. Crossover neither creates nor destroys any bits in the

population. Therefore, the population after applying selection and crossover will contain more ones

than the original population. Since fitness increases with the number of ones in a solution, overall

13

Select
tournaments

10010(2) vs. 10111(4)
10111(4) vs. 10010(2)
10111(4) vs. 10001(2)
11001(3) vs. 01101(3)
11110(4) vs. 10010(2)
10111(4) vs. 10010(2)

Tournaments

11110(4)
01101(3)
10111(4)
11001(3)
10010(2)
10001(2)

10111(4)
10111(4)
10111(4)
11001(3)
11110(4)
10111(4)

Selected population

10111(4)
11101(4)
10111(4)
11011(4)
10110(3)

10111(4)

Offspring population

11001(3)
00010(1)
11101(4)
10111(4)
00001(1)
10010(2)

Initial population

11101(4) vs. 10111(4)
10111(4) vs. 11101(4)
11101(4) vs. 00010(1)
10010(2) vs. 00010(1)
00010(1) vs. 00001(1)
00010(1) vs. 11001(3)

Tournaments

11101(4)
10111(4)
11101(4)
10010(2)
00010(1)
11001(3)

Selected population

01101(3)
10111(4)
11001(3)
10010(2)
10001(2)

11110(4)

Offspring population

Tournament
winners Crossover

Select
tournaments

Tournament
winners Crossover

Generation 1

Generation 2

Figure 1.2: The simulation of the GA with a population of size N = 6, population-wise uniform
crossover, and binary tournament selection on onemax of size 5. The fitness of each solution is
shown in parentheses.

fitness is expected to increase over time.

Ideally, every generation should increase average fitness (unless no improvement is possible).

However, an increase in average fitness tells only half the story. The same increase in the fitness

of the population in the first generation would be achieved by using no recombination at all.

However, by applying selection without recombination, the best solution in the population would

soon overtake the entire population and there would be no chance of finding the real optimum. Even

more importantly, only initial solutions would be considered. Since the initial population in GAs

is generated at random, the GA with selection only would perform no better than random search

or total enumeration with a limited sample. For an efficient and reliable search for the optimum,

there must be an additional mechanism besides selection that ensures effective exploration of new

solutions. This can be achieved by combining superior partial solutions propagated by selection.

From a mixing point of view, population-wise uniform crossover is the most powerful recombi-

nation one can imagine. It completely shuffles the bits on each position. As the proportion of ones

on each position increases, the chances of finding the optimum by shuffling increase over time. For

instance, if the proportion of ones on each position reaches 99%, there is almost no way of avoiding

the optimum if crossover with a sufficient exploratory power is used.

14

In subsequent generations, the selectorecombinative search further increases the quality of can-

didate solutions. In the simulation, the optimum is found in the third generation. Once the

optimum has been found, it quickly (in two more generations) takes over the entire population.

1.4 Population-wise Uniform Crossover as a Probabilistic Model

Recall that population-wise uniform crossover considers each position independently and creates a

new population of candidate solutions by shuffling bits on each position across the population of

promising solutions. Consider using the following probabilistic recombination instead:

1. Compute the probability of a 1 at each position in the selected set of promising solutions.

The probability of a 1 at the ith position is denoted by p(Xi = 1) or simply pi.

2. Generate new candidate solutions by setting the bit at the ith position of each solution to

be 1 with the probability pi; otherwise, set the bit to 0. The order in which the bits in each

solution are generated does not matter.

3. Repeat step 2 until enough candidate solutions have been generated.

We will refer to the above crossover operator as probabilistic uniform crossover. There is an im-

portant difference between population-wise uniform crossover and probabilistic uniform crossover.

Population-wise uniform crossover manipulates the selected population of promising solutions to

create a new population of candidate solutions. On the other hand, probabilistic uniform crossover

first computes relevant statistics from the selected population, then discards the population, and

uses only the acquired statistics to generate new solutions. Nonetheless, the expected outcome of

both operators is the same.

Figure 1.3 shows the first two generations of the simulation using probabilistic uniform crossover.

As discussed above, “recombination” proceeds by computing the probability of 1 for each position of

the selected population of promising solutions, and then using the computed probabilities to sample

new candidate solutions. Although the proportion of 1s in each position is expected to remain the

same after sampling the probability vector, a certain amount of noise is introduced with sampling;

however, as the population grows, these effects become negligible. In any case, the proportion

15

Select
tournaments

11101(4) vs. 10111(4)
10111(4) vs. 11101(4)
11101(4) vs. 00010(1)
10010(2) vs. 00010(1)
00010(1) vs. 00001(1)
00010(1) vs. 11001(3)

Tournaments

11101(4)
10111(4)
11101(4)
10010(2)
00010(1)
11001(3)

Probability
vector

Tournament
winners

Select
tournaments

10101(3)
11011(4)
00011(2)
10001(2)
10011(3)

10100(2)

10101(3)
11011(4)
00011(2)
10001(2)
10011(3)

10100(2) 10011(3) vs. 00011(2)
00011(2) vs. 10011(3)
00011(2) vs. 10100(2)
10001(2) vs. 11011(4)
10101(3) vs. 10011(3)
00011(2) vs. 10011(3)

10011(3)
10011(3)
00011(2)
11011(4)
10101(3)
10011(3)

11111(5)
10001(2)
10011(3)
11111(5)
10011(3)

00111(3)

Generation 1

Initial population

11001(3)
00010(1)
11101(4)
10111(4)

10010(2)
00001(1)

Selected population

Generation 2

winners
Tournament

Sample

Sample

Tournaments Selected population Offspring population

Offspring population

6 6 6 6 6
5 1 1 5 6

5 3 3 3 4
6 6 6 6 6

Figure 1.3: The simulation of the GA with probabilistic uniform crossover. The simulation uses a
population of size N = 6, and binary tournament selection on onemax of size 5. The fitness of each
solution is shown in parentheses.

of 1s continues to increase over time along with the average fitness. Using probabilistic uniform

crossover, the simulation finds the optimum already in the second generation. After additional two

generations, the entire population converges to the optimum.

Probabilistic uniform crossover suggests an alternative approach to processing promising so-

lutions. Rather than combining the bits and pieces of solutions by directly manipulating the set

of promising solutions, one can extract important statistical information about the population of

promising solutions, and use the resulting probabilistic model to sample new solutions. In proba-

bilistic uniform crossover, only bitwise probabilities are extracted; however, it is straightforward to

modify the method to look at pairs of bits, for instance. This possibility raises an interesting ques-

tion: When does the GA need more complex probabilistic models? The following section attempts

to answer that question.

16

1.5 What if Single Bits are Misleading?

Some problems—such as onemax—can be solved efficiently by calculating and exploiting proba-

bilities independently bit by bit. However, what happens if the value of the ith bit of the global

optimum is 1, but the average fitness of solutions with 1 on that position is lower than the average

fitness of solutions with 0 on that position? More generally, what happens if the average fitness of

partial solutions of order one misleads selection away from the optimum? Unfortunately, in that

case both population-wise uniform crossover and probabilistic uniform crossover will fail in finding

the optimum.

The reason for the failure of GAs with population-wise uniform crossover is that due to mis-

leading statistics over single bits, the number of partial solutions contained in the optimum will

decrease after selection and recombination. As an example, consider the trap function of order

5 (Ackley, 1987; Deb & Goldberg, 1991), defined as

trap5(u) =

⎧⎪⎨
⎪⎩

5 if u = 5

4− u otherwise
, (1.2)

where u is the number of ones in the input string. See Figure 1.4 to visualize the trap function. In

trap, the average fitness of all solutions containing 1 on the first position is 1.375, while the average

fitness of all solutions that contain 0 on the first position is 2. Therefore, if we focus on one bit

only, a 0 seems to be a better choice than a 1 is, even if the population was infinite. However,

the optimum of trap is in 11111. Therefore, using statistics over solutions of order 1 leads away

from the optimum and after selection and recombination, the proportion of ones in the population

decreases. The same situation occurs in subsequent generations (although the average fitnesses

change a little), and the GA converges to the local optimum in 00000.

What if we use statistics over pairs of bits? The average fitness of block 00 is 2.5, the average

fitness of 01 and 10 is 1.5, and the average fitness of 11 is 1.25. Again, the statistics lead to 00000,

while the actual optimum is in 11111. The situation remains the same even if we consider blocks

of size 3 or 4 bits. In all those cases, single-bit statistics leads to the local optimum 00000. For

statistics to lead in the right direction, blocks of size 5 bits must be considered; in this case, the

17

0 1 2 3 4 5
0

1

2

3

4

5

Number of ones, u

tr
ap

(u
)

Figure 1.4: The trap function of order 5. The value of the trap function depends on the number of
ones in the input string. There are two optima of the trap; the global optimum in 11111 and the
local optimum in 00000. The average fitness over any subset of bits in the trap leads to the local
attractor, unless all the bits are considered together.

fitness of 11111 is 5 and is therefore greater than the fitness of any alternative instantiation of 5

bits.

The remainder of this chapter looks at several important conditions that must be satisfied for

effective exploitation of selectorecombinative bias. First, the notions of building blocks and problem

decomposition are discussed. Next, the remaining conditions are examined briefly. Finally, the need

for learning an appropriate decomposition of the problem motivates linkage learning, which focuses

on the design of adaptive recombination techniques capable of adapting to the problem at hand to

enable exploitation of a proper problem decomposition.

1.5.1 Building Blocks

Although the trap function is an artificial example, it suggests that there exist functions for which

processing bits independently does not work. For success of selectorecombinative search, it is nec-

essary that recombination effectively processes partial solutions that are contained in the optimum,

and that are superior to their competitors over the course of the GA run. We call those superior

partial solutions of the optimum building blocks (Holland, 1975; Goldberg, 1989a; Goldberg, 2002).

Since building blocks are superior to their competitors, selection will increase the proportion of

18

building blocks in a population. By combining promising solutions without disrupting building

blocks (disruption can eliminate a building block) the number of copies of partial solutions con-

tained in the optimum increases, and the chances of hitting the optimum (with strong enough

recombination) grow over time. Of course, it is necessary that building blocks cover the entire

optimum.

Note that the fitness of a solution containing a particular partial solution does not depend only

on the partial solution itself but also on the values on the remaining positions in the solution. The

values on the positions outside a partial solution define the context of the partial solution (Goldberg,

2002). In the initial population, contexts of a partial solution are distributed uniformly. As the

population evolves, the distribution of contexts of each partial solution changes as well. Building

blocks must be superior to their competitors in all distributions of contexts that can be expected

to occur over the GA run.

The above definition of building blocks is based on the concept of minimal sequentially supe-

rior building blocks of the optimum (Goldberg, 2002). Kargupta (1995) describes a different view

on problem decomposition and its exploitation by defining a class of problems that are order-k

delineable within the SEARCH (search envisioned as relation and class hierarchizing) framework.

SEARCH sees GAs as inductive procedures that try to sample solutions near the optimum given a

sample of promising solutions. Another view on problem decomposition can be found in Mühlenbein

and Mahnig (1999), who define sufficient conditions for decomposing a problem based on distribu-

tion factorization.

1.5.2 Building Blocks and Nonlinearities in Probabilistic Models

Since the primary focus of this thesis is on probabilistic recombination operators that extend

probabilistic uniform crossover to deal with more complex problems, it is important to relate the

notion of building blocks with the probabilistic approach. In this case, the concept of building blocks

is important to identify partial solutions that must be treated by a probabilistic model as an intact

block. Probabilities for each partition corresponding to a proper building-block decomposition of

the problem must be extracted from the population of promising solutions and the new solutions

must be generated using those probabilities.

19

However, most probabilistic approaches depart from the notion of building blocks and focus on

nonlinearities in the problem. Clearly, not every nonlinearity among a group of bits means that

the group must be considered as an intact block. However, it is difficult to distinguish between the

nonlinearities that must be considered and those that need not be considered. For instance, if the

optimum in onemax was given an additional reinforcement, a nonlinearity would be introduced but

the problem could still be solved by considering each bit independently. On the other hand, the

trap function introduces nonlinearities that must be considered to avoid deception. If any subset of

positions in a trap is considered independently of other positions in the trap, selectorecombinative

search will simply go in the wrong direction. Probabilistic approaches take the safe route by

assuming that every nonlinearity must be taken into account. Population size and other factors

might not permit all nonlinearities to be considered, so sometimes only the strongest nonlinearities

can be identified and processed.

Identification of important statistics for processing populations of promising solutions is closely

related to feature extraction in machine learning. While in GAs the task is to find important

statistics to converge to the optimum, in feature extraction the task is to process a given set

of features to ensure that the target concept (function) can be learned using a specified class of

concepts. Although this connection is interesting, it is beyond the scope of this thesis to discuss it

in more detail.

1.5.3 Some Additional Requirements

There are additional requirements for the above scheme to work. For effective processing of building

blocks, the population must be large enough to ensure that there is a sufficient supply of raw

building blocks in the initial population. Additionally, recall that the fitness of solutions containing

a particular building block depends on building block’s context. The population must be large

enough for the effects of context to average out so that selection creates more copies of each

building block at the expense of its competitors. For a more thorough overview of the important

issues to consider for the successful application of GAs, see Goldberg’s seven conditions of GA

success (Goldberg, Deb, & Clark, 1992; Goldberg, 1994; Goldberg, 2002). We will return to many

of these issues in chapter 4.

20

The necessity of an adequate initial supply of building blocks suggests that the population

size must grow at least exponentially with the order of the largest building block in the problem.

Therefore, it is necessary to consider as short building blocks as possible, while maintaining a cover

for the entire solution. The class of problems that can be solved by considering building blocks

of order bounded by a constant is often referred to as problems of bounded difficulty or boundedly

difficult problems. It can be shown that selectorecombinative GAs can solve problems of bounded

difficulty (no matter what the difficulty is) in subquadratic or quadratic time with respect to the

number of fitness evaluations (Goldberg, Deb, & Clark, 1992; Mühlenbein & Schlierkamp-Voosen,

1993; Harik, Cantú-Paz, Goldberg, & Miller, 1997). Of course, effective processing of building

blocks is necessary to ensure such efficient performance.

1.5.4 Decompositional Bias and Linkage Learning

Problem decomposition according to building blocks defines the optimization bias exploited by a

proper combination of selection and recombination. In other words, decomposition defines what

regularities are exploited by GAs. These regularities can be represented by a set of dependencies

and independencies between groups of variables according to a proper, nonmisleading, problem

decomposition. Recombination must respect these dependencies and independencies and juxtapose

the building blocks without their disruption. At the same time, selection must ensure their growth.

The line of research that focuses on identification and effective processing of building blocks

is sometimes called linkage learning. The primary goal of linkage learning is to design methods

that are capable of (1) an automatic identification of building blocks and (2) effective processing of

the identified blocks. There are a number of approaches that attempt to modify GA operators or

representation to ensure that the correct building blocks are processed. For an overview, see Harik

(1997).

More recently, a number of probabilistic crossover operators have been proposed to deal with the

same problem. While linkage-learning approaches based on traditional genetic algorithms attempt

to directly identify building blocks in some way, probabilistic linkage-learning algorithms attempt

to learn the nonlinearities in a problem and to sample new solutions based on sufficient statistics

that cover all, or at least most, of the identified nonlinearities in the problem. The next chapter

21

reviews the most influential approaches that use probabilistic models to model promising solutions

found so far and sample new candidate solutions.

1.6 Summary

This chapter introduced the basic procedure of genetic algorithms and argued that probabilistic-

model building and sampling can be used as an alternative to traditional recombination in genetic

algorithms. A summary of the key points of this chapter follows:

• An optimization problem may be defined by specifying (1) the set of all potential solutions

to the problem and (2) a measure to evaluate performance of each candidate solution with

respect to the objective. The goal is to find a solution or a set of solutions that perform best

with respect to the specified measure.

• Black-box optimization methods approach an optimization problem without requiring any

problem-specific knowledge in advance. The only way of learning something about the prob-

lem at hand is to sample and evaluate new candidate solutions.

• Genetic algorithms (GAs) approach black-box optimization by evolving a population of can-

didate solutions to a given problem. The sampling in GAs is typically guided by (1) selection,

(2) recombination, and (3) mutation. Selection biases the search to solutions that look promis-

ing based on their performance. Crossover combines bits and pieces of promising solutions

found so far, whereas mutation perturbs promising solutions slightly.

• The performance of each candidate solution in a GA population can be determined by a

computer procedure, a simulation, an interaction with a human, or a combination of the

above. The evaluation can be affected by external noise. Often, the performance of each

candidate solution is expressed by one real number, called fitness. The better the solution,

the higher its fitness.

• An alternative way of combining promising solutions is to build and sample a probabilistic

model of these solutions. For example, population-wise uniform crossover can be simulated

22

by computing the proportion of ones on each position in a selected set of promising solutions,

and generating new candidate solutions according to these proportions.

• For a successful application of the selectorecombinative bias of GAs, it is important that GAs

process partial solutions that are both superior to their competitors and contained in the op-

timum. These partial solutions are called building blocks. The building-block decomposition

can be expressed in the form of dependencies and independencies, or by a set of building

blocks that cover the entire problem. In any case, it is important that statistics over the

subproblems in the decomposition lead to the optimum.

• The class of problems that can be decomposed into subproblems of bounded order is usually

referred to as problems of bounded difficulty or boundedly difficult problems.

• Linkage learning focuses on the design of methods that can identify, propagate, and combine

building blocks effectively. In terms of probabilistic recombination, linkage learning methods

attempt to find relevant statistics leading to the global optimum. The purpose of linkage

learning is to design robust and scalable methods for solving problems of bounded difficulty.

23

Chapter 2

Probabilistic Model-Building Genetic
Algorithms

Probabilistic model-building genetic algorithms (PMBGAs) (Pelikan, Goldberg, & Lobo, 2002) use

probabilistic modeling of promising solutions to guide the exploration of the search space instead of

using the traditional recombination and mutation operators of simple GAs. There are many ways

of estimating the probability distribution of promising solutions and each PMBGA deals with the

problem of estimating distributions in its own way. This chapter reviews most influential PMBGAs

and discusses their strengths and weaknesses.

The chapter starts by describing the general procedure of PMBGAs, which can be seen as

a template where one simply fills in methods of choice for learning and sampling probabilistic

models. Section 2.2 motivates the use of probability distributions in PMBGAs by presenting an

example of how a simple univariate distribution can be used to solve a linear problem and how

the simple approach can be generalized to more complex problems. The example leads to an

overview of the approaches that have shaped the field of using probabilistic models in genetic and

evolutionary computation. Section 2.3 introduces the family of PMBGAs for optimizing problems

in the domain of fixed-length strings over a finite alphabet. Binary strings are used throughout most

of the section, but most approaches can be generalized to any finite alphabet in a straightforward

manner. Section 2.4 presents some of the approaches for optimizing problems in other than discrete

domains. Section 2.5 concludes the chapter with a brief summary.

24

Probabilistic Model-Building Genetic Algorithm (PMBGA)

(1) set t← 0

randomly generate initial population P (0)

(2) select a set of promising strings S(t) from P (t)

(3) estimate the probability distribution of the selected set S(t)

(4) generate a set of new strings O(t) according to the estimate

(5) create a new population P (t + 1) by replacing some strings from P (t) with O(t)

set t← t + 1

(6) if the termination criteria are not met, go to (2)

Figure 2.1: Pseudo-code of the general PMBGA procedure.

2.1 General PMBGA Procedure

The previous chapter presented a simple probabilistic recombination operator that builds and

samples a probabilistic model of promising solutions as opposed to using traditional recombination

and mutation of GAs. Probabilistic model-building genetic algorithms (PMBGAs) build on this

idea and use the estimation of a true distribution of promising solutions to guide the search.

The general procedure of PMBGAs is similar to that of GAs (see Section 1.2). The initial

population of PMBGA is generated at random. In each iteration, promising solutions are first

selected from the current population of candidate solutions. The true probability distribution of

the selected solutions is then estimated. New candidate solutions are then generated by sampling

the estimated probability distribution. The new solutions are then incorporated into the original

population, replacing some of the old ones or all of them. The process is repeated until the

termination criteria are met. The pseudo-code of the PMBGA procedure is shown in Figure 2.1.

The difference between PMBGAs and traditional GAs lies in the way PMBGAs process a

population of promising solutions to generate new candidate solutions. Instead of performing

crossover on pairs of selected solutions with a certain probability and then applying mutation to

each of the resulting solutions, the following two steps are performed:

25

1. Model building. A probabilistic model of promising solutions is constructed.

2. Model sampling. The constructed model is sampled to generate new solutions.

PMBGAs differ in how they cope with the above two steps and in whether they incorporate

special selection or replacement mechanisms for processing the populations of solutions. In the

literature, PMBGAs are also called estimation of distribution algorithms (EDAs) (Mühlenbein &

Paaß, 1996), and iterated density estimation algorithms (IDEAs) (Bosman & Thierens, 2000a).

The following section motivates the use of probability distributions by presenting two example

problems and the PMBGA operators that can solve the presented problems efficiently and reliably.

The section briefly discusses fundamental questions of a successful application of PMBGAs and

motivates a decomposition of PMBGAs according to the complexity of models they employ.

2.2 Motivation

The previous chapter indicated that the purpose and mechanics of GAs and PMBGAs are very

similar. This section supports this claim by providing two simple examples that motivate the use

of probability distributions to guide the search in GAs. The first example focuses on onemax

and probabilistic uniform crossover from the previous chapter. The second example shows how to

extend the methodology to cope with more complex problems, such as composed traps of order k.

2.2.1 Onemax and Probabilistic Uniform Crossover

Recall that onemax is defined as the sum of bits in the input binary string (see Equation 1.1). Since

in onemax the contribution of each bit is independent of the values at the remaining positions, one

way of decomposing the problem properly is to assume mutual independence of all the variables

in the problem. Consequently, any crossover can be used without introducing disruption of impor-

tant building blocks. As discussed above, to maximize the mixing, recombination can create new

solutions by shuffling the values on each position by population-wise uniform crossover introduced

in the previous chapter.

The previous chapter showed that population-wise uniform crossover can be simulated by prob-

abilistic uniform crossover. In the language of probability distributions, probabilistic uniform

26

crossover approximates the distribution of promising solution by a univariate marginal distribu-

tion:

p(X) =
n−1∏
i=0

p(Xi),

where X = (X0, . . . ,Xn−1) is the vector of random variables corresponding to string positions; p(X)

is the probability of the vector X; and p(Xi) is the probability of the variable Xi corresponding to

the ith string position. To learn a univariate probability distribution, the set of promising solutions

is parsed to determine the probability of 1 at each position. If a variable can obtain more than two

values, one probability must be computed for each value the variable can obtain; of course, one of

the probabilities can be omitted, because the sum of the probabilities for each variable must be

equal to 1. To sample a univariate distribution, the value of each variable is generated according

to the learned probabilities; in the binary case, ith position is set to 1 with probability p(Xi = 1),

otherwise the position is set to 0.

Using the above distribution estimate, it can be shown (Thierens & Goldberg, 1994; Harik,

Cantú-Paz, Goldberg, & Miller, 1997; Mühlenbein & Schlierkamp-Voosen, 1993) that the PMBGA

converges to a solution with a fixed probability of getting each bit right in O(n) fitness evaluations

(assuming an adequate population size). If the accuracy increases with the problem size (requiring

a constant number of mistaken bits overall), the overall time complexity is O(n lnn).

2.2.2 Composed Traps and Probabilistic Building-Block Crossover

Let us now define the class of composed trap functions of order k. The basic structure of composed

traps is simple. The entire string is first partitioned into nonoverlapping partitions of k bits each.

The partitioning is fixed during the entire optimization, but it is important that we do not assume

anything about the positions of the variables corresponding to different partitions. We denote the

positions of the bits corresponding to the ith partition by indices from bi,0 to bi,k−1. A composed

trap function of order k is then defined as

ftrap,k(X) =

n
k
−1∑

i=0

trapk(Xbi,0
+ . . . + Xbi,k−1

). (2.1)

Each block (Xbi,0
, . . . ,Xbi,k−1

) contributes to the fitness through a general trap function of order

27

k (Ackley, 1987; Deb & Goldberg, 1991) defined as

trapk(u) =

⎧⎪⎨
⎪⎩

fhigh if u = k

flow − u flow
k−1 otherwise

(2.2)

where u denotes the number of ones in the input block of k bits. The trap function of order

5 presented in the previous chapter is a special case of the general trap function with k = 5,

fhigh = 5, and flow = 4 (see Figure 1.4 in the previous chapter to visualize the special case).

The trap function has one global optimum in the string of all ones and a local optimum in the

string of all zeroes. For a large enough ratio flow/fhigh (see Deb and Goldberg (1991) for sufficient

conditions), an important feature of traps is that the average fitness of any block of bits of order

lower than k misleads the algorithm to the local optimum (recall the discussion in the previous

chapter).

Composed trap functions contain a number of traps, which are mutually independent. Traps

cannot be further decomposed; a proper decomposition should therefore include dependencies

among the positions in each partition and independencies between the positions in different trap

partitions. Let’s assume that the algorithm is capable of discovering where the trap partitions

are; in other words, let’s assume that the algorithm is capable of learning linkage. To prevent the

disruption of trap partitions, recombination should never exchange only part of a partial solution

in any trap partition, it should exchange either the entire partial solution or nothing. To maximize

the mixing, recombination should exchange as many partial solutions as possible. This results

in population-wise building-block crossover, which shuffles entire blocks (defined by indices bi,j as

described above) similarly as population-wise uniform crossover shuffles single bits.

Analogously to the single-bit case, population-wise building-block crossover can be approxi-

mated by selecting partial solutions for each trap partition with the probability proportional to the

partial solution’s frequency in the selected set of promising solutions. It the language of probability

distributions, new solutions can be generated by sampling the following distribution:

p(X) =

n
k
−1∏

i=0

p(Xbi,0
, . . . ,Xbi,k−1

),

28

where p(Xbi,0
, . . . ,Xbi,k−1

) denotes the probability of a partial solution (Xbi,0
, . . . ,Xbi,k−1

) corre-

sponding to the ith trap partition. We refer to the operator based on the above distribution

estimate as probabilistic building-block crossover.

As in the linear case, it can be shown that PMBGA with probabilistic building-block crossover

will converge in O(n) evaluations for a fixed probability of getting each trap partition right and

O(n lnn) evaluations for a constant number of wrong partitions. This reasoning leads to an in-

teresting conclusion: If the order of subproblems in a proper problem decomposition is bounded

and a probabilistic model encodes a correct problem decomposition, the complexity of PMBGAs

is O(n) or O(n lnn) independently of the order of subproblems. That poses challenge of how we

learn the linkage. If we can learn the linkage without substantial increase in cost, PMBGAs can

solve problems of bounded difficulty quickly, accurately, and reliably.

But let’s consider other alternative approaches to solving problems of bounded difficulty. GAs

with fixed crossover—such as one-point and uniform crossover—will require exponentially sized

populations to find the optimum of composed traps of any order k ≥ 3 (Thierens & Goldberg, 1993).

Therefore, the complexity of GAs with fixed recombination is at least exponential. Consequently,

fixed recombination operators are not capable of solving arbitrary problems of bounded difficulty

efficiently.

Another alternative is to use a stochastic hill climber based on bit-flip mutation. The stochastic

hill climber starts with a random solution. In each iteration, the hill climber applies bit-flip mutation

to the current solution, and replaces the original solution by the new one if the new solution

performs better. The number of evaluations until the stochastic hill climber converges to the

optimum for problems decomposable into subproblems of order k can be bounded by O(nk lnn) as

shown by Mühlenbein (1992). Although nk is polynomial for a fixed k, for moderate values of k, nk

grows extremely fast and the search becomes inefficient compared to PMBGAs. The performance

of GAs with selection and mutation only follows a similar trend, because it can be approximated

by a number of parallel hill climbers.

Therefore, both mutation and fixed crossover don’t scale up well with the problem size for

boundedly difficult problems of moderate difficulty. Nonetheless, if we were capable of designing

operators that would learn appropriate decomposition without introducing significant computation

29

overhead, problems of bounded difficulty (no matter what the difficulty is) can be solved in a

subquadratic number of fitness evaluations.

Much research in PMBGAs focuses on learning appropriate decomposition using populations of

promising solutions as a source of information about the structure of the problem. To learn a proper

decomposition (identify the building blocks), PMBGAs use techniques for learning probabilistic

models. However, learning probabilistic models is difficult and there are several important tradeoffs

that must be considered for the design of competent PMBGAs.

The first tradeoff is related to the number of independence assumptions a model makes. With

too few independence assumptions, the model does not allow for effective exploration and requires

large populations. Imagine we would assume that each variable depends on every other variable and

therefore we would not recombine promising solutions at all. That would lead to no exploration

and, consequently, we would fail unless we guessed the solution initially. Moreover, to estimate

the parameters of such a complex model, the population size would have to grow exponentially

with the problem size. On the other hand, with too many independence assumptions, a model

may not prevent important partial solutions from disruption. Recall that if the model would not

consider important dependencies in composed traps, PMBGAs would require exponentially large

populations and the time complexity would therefore be at least exponential with respect to the

problem size.

The second tradeoff is related to the complexity of learning algorithms. Simple models are easy

to learn, but PMBGAs with simple models often fail at solving complex problems. Complex models

allow PMBGAs to solve complex problems, but it costs more to learn such models.

The remainder of this chapter reviews PMBGAs proposed in the past. The methods are clas-

sified according to the underlying representation of candidate solutions and the complexity of the

class of models they consider. The first order of business is to describe PMBGAs that assume

that candidate solutions are represented by fixed-length strings over a finite alphabet; we call these

algorithms discrete PMBGAs. Next, PMBGAs that use models defined over other domains are

summarized.

30

2.3 Discrete Variables

One natural classification of discrete PMBGAs considers the order of interactions that the under-

lying models employ. PMBGAs have evolved from modeling low-order interactions to modeling

higher order ones over time. This section starts by reviewing PMBGAs that assume that all vari-

ables in a problem are independent; these approaches are based on probabilistic uniform crossover

discussed earlier. Next, the section discusses those PMBGAs capable of covering some pairwise

interactions by using probabilistic models in the form of a chain, tree, and forest. The section ends

with a short overview of PMBGAs that can cope with interactions of any order.

2.3.1 No Interactions

The population-based incremental learning (PBIL) (Baluja, 1994) replaces the population of so-

lutions by a probability vector (p0, p1, . . . , pn−1), where pi denotes the probability of 1 at the ith

position of solution strings. Each pi is initially set to 0.5, which corresponds to a uniform distribu-

tion over the set of all solutions. In each iteration, PBIL generates a specified number of solutions

according to the current probability vector. Each value is generated independently of its context

(remaining bits) and thus no interactions are considered (see Figure 2.2). The best solution out of

the generated set of solutions is then used to update the probability-vector entries using

pi = (1− λ)pi + λxi,

where λ ∈ (0, 1) is the learning rate (say, 0.02), and xi is the ith bit of the best solution. Using

the above rule, the probability pi of each bit being 1 increases if the best solution contains 1 in

that position and decreases otherwise. In other words, probability-vector entries move toward the

best solution. The process of generating new solutions and updating the probability vector is

repeated until some termination criteria are met; for instance, the run can be terminated if all the

probabilities are close to either 0 or 1.

For example, for a 5-bit onemax, 3 strings generated in each iteration, and λ = 0.2, the first

iteration of PBIL could proceed as follows. Assume that the solutions generated from the initial

probability vector (0.5, 0.5, 0.5, 0.5, 0.5) are 10010, 11010, and 10111. The last solution has the

31

Figure 2.2: A graphical model with no interactions covered displayed as a Bayesian network. The
model with no interactions is equivalent to probabilistic uniform crossover.

highest fitness and is used to update the probability vector. With λ = 0.2, the new probability

vector is (0.6, 0.4, 0.6, 0.6, 0.6).

In the GA literature, PBIL has been also referred to as hill climbing with learning (HCwL) (Kvas-

nicka, Pelikan, & Pospichal, 1996) and the incremental univariate marginal distribution algorithm

(IUMDA) (Mühlenbein, 1997). Theoretical analyses of PBIL can be found in Kvasnicka, Pelikan,

and Pospichal (1996), Höhfeld and Rudolph (1997), and Gonzalez, Lozano, and Larranaga (2001).

The basic difference between PBIL and most GAs (including PMBGAs) is that PBIL does not

actually use a population, but it replaces the population by a probability vector. Consequently,

the connection between PBIL and GAs becomes somewhat fuzzy. The compact genetic algorithm

(cGA) (Harik, Lobo, & Goldberg, 1997) eliminates the gap between PBIL and traditional GAs. As

PBIL, cGA replaces the population by a probability vector. All entries in the probability vector

are initialized to 0.5. However, a different update rule is used to simulate one round of a variant

of binary tournament selection that replaces the worst of the two solutions by the best one using

a population of size N . In particular, denoting the bit in the ith position of the best and worst of

the two solutions by xi and yi, respectively, the probability-vector entries are updated as follows:

pi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

pi + 1
N if xi = 1 and yi = 0

pi − 1
N if xi = 0 and yi = 1

pi otherwise

,

where N denotes the “population size”. Although cGA uses a probability vector in place of a

32

population, updates of the probability vector correspond to replacing one candidate solution by

another one using a population of size N and shuffling the resulting population using population-

wise uniform crossover.

Unlike PBIL and cGA, the univariate marginal distribution algorithm (UMDA) (Mühlenbein

& Paaß, 1996) maintains a population of solutions. Each iteration of UMDA starts by selecting

a population of promising solutions as in standard GAs. A probability vector is then computed

using the selected population of promising solutions and new solutions are generated by sampling

the probability vector. The new solutions replace the old ones and the process is repeated until

termination criteria are met. UMDA is therefore equivalent to a GA with probabilistic uniform

crossover (see sections 1.4 and 2.2.1). Since UMDA uses a probabilistic model as an intermediate

step between the original and new populations, UMDA fits the PMBGA framework better than

PBIL and cGA do. Nonetheless, the performance and dynamics of PBIL, cGA, and UMDA are

similar.

All the algorithms described in this section can solve problems decomposable into subproblems

of order one in a linear or quadratic number of fitness evaluations, depending on the type of the

problem at hand. However, if decomposition into single-bit subproblems misleads the decision

making away from the optimum (some building blocks cannot be smaller than 2 bits long), these

algorithms scale up poorly with increased problem size. The next section considers PMBGAs that

use models with pairwise dependencies; consequently, these PMBGAs extend the class of problems

that can be solved in a scalable manner to problems decomposable into subproblems of order at

most two.

2.3.2 Bivariate Interactions

This section focuses on PMBGAs using pairwise probabilistic models that can encode dependencies

in the form of a chain, a tree, or a forest (a set of isolated trees) among the variables. Because these

models move beyond the assumption of variable independence, they represent a first step toward

competent PMBGAs capable of linkage learning.

The mutual-information-maximizing input clustering (MIMIC) algorithm (De Bonet, Isbell, &

Viola, 1997) uses a chain distribution (see Figure 2.3(a)) specified by (1) an ordering of string

33

(a) MIMIC (b) Baluja & Davies (c) BMDA

Figure 2.3: The graphical models with pairwise interactions covered displayed as a Bayesian net-
work. The models that can cover some pairwise interactions form the (a) chain, (b) tree, or (c)
forest.

positions (variables), (2) a probability of 1 in the first position of the chain, and (3) conditional

probabilities of each other position given the value in the previous position of the chain. A chain

probabilistic model encodes the probability distribution where the first variable is independent of

the remaining variables (as in probabilistic uniform crossover) and each other variable is conditioned

on the previous variable in the chain.

After selecting promising solutions and computing marginal and conditional probabilities, a

greedy algorithm is used to maximize the mutual information of adjacent variables in the chain.

In this fashion the Kullback-Liebler divergence (Kullback & Leibler, 1951) between the chain and

actual distributions is minimized; however, the greedy algorithm does not guarantee global optimal-

ity of the constructed model (with respect to Kullback-Liebler divergence). The greedy algorithm

starts in a variable with the lowest unconditional entropy. The chain is expanded by adding a new

variable that minimizes the conditional entropy of the new variable given the last variable in the

chain. Once the full chain is constructed for the selected population of promising solutions, new

solutions are generated by sampling the distribution encoded by the chain and the probabilities

associated with the chain.

There are two important drawbacks of using chain distributions. The first drawback is that

chain distributions allow only a very limited representation of dependencies in a problem. Despite

that, chain distributions can encode dependencies between pairs of positions that are distant in

solution strings; these dependencies are preserved by neither uniform nor one-point crossover. The

34

second drawback is that there is no known algorithm for learning the best chain distribution in

polynomial time. Despite the disadvantages of using only chain distributions, the use of pairwise

interactions was one of the most important steps in the development of competent PMBGAs. It

was the first time probability distributions and their estimation were used to learn linkage.

Baluja and Davies (1997) use dependency trees (see Figure 2.3(b)) to model promising solutions.

As in PBIL, the population is replaced by a probability vector containing all pairwise probabili-

ties. The probabilities are initialized to 0.25 and repeatedly adjusted according to new promising

solutions acquired on the fly. A dependency tree encodes the probability distribution where the

variable in the root of the tree is independent, and every other variable is conditioned on its parent

in the tree.

A variant of Prim’s algorithm for finding the minimum spanning tree of a given graph can

be used (Prim, 1957) to construct an optimal tree distribution. Here the task is to find a tree

that maximizes mutual information between the parents and their children. This can be done

by first randomly choosing a variable to form the root of the tree, and “hanging” new variables

to the existing tree so that the mutual information between the parent of the new variable and

the variable itself is maximized. In this way, the Kullback-Liebler divergence between the tree and

actual distributions is minimized as shown by Chow and Liu (1968). Once a full tree is constructed,

new solutions are generated according to the distribution encoded by the constructed dependency

tree and the conditional probabilities computed from the probability vector.

The bivariate marginal distribution algorithm (BMDA) (Pelikan & Mühlenbein, 1999) uses a

forest distribution (a set of mutually independent dependency trees, see Figure 2.3(c)). This class

of models is even more general than the class of dependency trees, because any forest that contains

two or more disjoint trees cannot be represented by a tree. As a measure used to determine whether

to connect two variables, BMDA uses a Pearson’s chi-square test (Marascuilo & McSweeney, 1977).

This measure is also used to discriminate the remaining dependencies in order to construct the final

model. To learn a model, BMDA uses a variant of Prim’s algorithm (Prim, 1957).

Pairwise models capture some interactions in a problem with reasonable computational over-

head. The algorithms presented in this section can identify, propagate, and juxtapose building

blocks of order two, and therefore they work well on problems decomposable into subproblems of

35

order at most two (De Bonet, Isbell, & Viola, 1997; Baluja & Davies, 1997; Mühlenbein, 1997;

Pelikan & Mühlenbein, 1999; Bosman & Thierens, 1999). Nonetheless, capturing only some pair-

wise interactions has still shown to be insufficient for solving problems with multivariate or highly

overlapping building blocks (Pelikan & Mühlenbein, 1999; Bosman & Thierens, 1999). That is why

PMBGA research has pursued more complex models discussed in the next section.

2.3.3 Multivariate Interactions

This section overviews PMBGAs using models that can encode multivariate interactions. Using gen-

eral multivariate models has brought powerful algorithms capable of solving problems of bounded

difficulty quickly, accurately, and reliably. On the other hand, learning distributions with multi-

variate interactions necessitates more complex model-learning algorithms that require significant

computational time and still do not guarantee global optimality of the resulting model. Nonethe-

less, many difficult problems are intractable using simple models and the use of complex models

and algorithms is warranted.

The factorized distribution algorithm (FDA) (Mühlenbein, Mahnig, & Rodriguez, 1999) uses a

fixed factorized distribution throughout the whole computation. The model is allowed to contain

multivariate marginal and conditional probabilities, but FDA learns only the probabilities, not

the structure (dependencies and independencies). To solve a problem using FDA, we must first

decompose the problem and then factorize the decomposition. This brings us back to population-

wise building-block crossover that is given building-block partitions in advance (see Section 2.2.2).

While it is useful to incorporate prior information about the regularities in the search space, the

basic idea of black-box optimization is to learn the regularities in the search space as opposed to

using the regularities specified by an expert. In other words, FDA ignores the problem of learning

what statistics are important to process within the PMBGA framework, and must be given that

information in advance.

The extended compact genetic algorithm (ECGA) (Harik, 1999) uses a marginal product model

(MPM) that partitions the variables into several partitions that are processed as independent

variables in UMDA (see Figure 2.4(a)). Each partition is treated as a single variable and different

partitions are considered to be mutually independent. The effects of learning and sampling an

36

MPM are thus the same as those of probabilistic building-block crossover from Section 2.2.2 with

the building-block partitions specified by the MPM.

To decide between alternative MPMs, ECGA uses one of minimum description length (MDL)

metrics (Rissanen, 1978; Rissanen, 1989; Rissanen, 1996), which favor models that allow higher

compression of data (in this case, the selected set of promising solutions). In particular, the Bayesian

information criterion (BIC) (Schwarz, 1978) is used. The advantage of using MDL metrics is that

they penalize complex models when they are not supported by significant statistical evidence and,

therefore, the resulting models are usually not overly complex. To find a good model, ECGA uses a

simple greedy algorithm that starts with each variable forming one partition. Each iteration of the

greedy algorithm merges two partitions that maximize the improvement of the model with respect

to BIC. If no more improvement is possible, the current model is used.

The initial model in ECGA is equivalent to the probability vector of PBIL, cGA, and UMDA.

However, bigger building blocks can be learned by merging multiple groups into a single one. If

the constructed model reflects a proper decomposition of the problem, ECGA is a very powerful

algorithm (Sastry & Goldberg, 2000; Sastry, 2001a). However, many real-world problems contain

overlapping dependencies (e.g., two-dimensional spin-glass systems examined in chapter 7), which

cannot be accurately modeled by dividing the variables into disjoint partitions. This can result in

poor performance of ECGA on those problems.

The Bayesian optimization algorithm (BOA) (Pelikan, Goldberg, & Cantú-Paz, 1998) builds a

Bayesian network for the population of promising solution (see Figure 2.4(b)). The learned network

is sampled to generate new solutions. Initially, BOA used the Bayesian-Dirichlet metric subject

to a maximum model-complexity constraint (Cooper & Herskovits, 1992; Heckerman, Geiger, &

Chickering, 1994) to discriminate competing models, but other metrics have been analyzed in later

work. In all variants of BOA, the model is constructed by a greedy algorithm that iteratively

adds a new dependency in the model that maximizes the model quality. Other elementary graph

operators—such as edge removals and reversals—can be incorporated, but edge additions are most

important. If no more improvement is possible, the current network is used. The greedy algorithm

used to learn a model in BOA is similar to the one used in ECGA. However, Bayesian networks can

encode more complex dependencies and independencies than models used in ECGA can. Therefore,

37

(a) ECGA (b) BOA

Figure 2.4: The graphical models with multivariate interactions covered. In ECGA, the variables
are partitioned into several groups, each corresponding to one component of the problem decompo-
sitions; the partitions are considered independent. In BOA, the variables are related using directed
edges, forming a directed acyclic graph called Bayesian network.

BOA is also applicable to problems with overlapping dependencies. Several such problems will be

discussed in chapter 7.

BOA uses an equivalent class of models as FDA does; however, BOA learns both the structure

and the probabilities of the model. Although BOA does not require problem-specific knowledge in

advance, prior information about the problem can be incorporated using Bayesian statistics, and

the relative influence of prior information to that contained in the population of promising solutions

can be tuned by the user. An interesting study on incorporating prior problem-specific information

to improve the performance of BOA in graph partitioning can be found in Schwarz and Ocenasek

(2000).

A discussion of the use of Bayesian networks as an extension to tree models can also be found

in Baluja and Davies (1998). An algorithm that uses Bayesian networks to model promising solu-

tions was independently developed by Etxeberria and Larrañaga (1999), who called it the estimation

of Bayesian network algorithm (EBNA). Mühlenbein and Mahnig (1999) later improved the original

FDA by using Bayesian networks together with the greedy algorithm for learning the networks de-

scribed above. The modification of FDA was named the learning factorized distribution algorithm

(LFDA).

PMBGAs that use models capable of covering multivariate interactions can solve a wide range of

problems in a scalable manner; promising results were reported on two-dimensional Ising spin-glass

38

systems (Pelikan, Goldberg, & Cantú-Paz, 1998; Mühlenbein & Mahnig, 1998), graph partition-

ing (Schwarz & Ocenasek, 1999; Schwarz & Ocenasek, 2000), telecommunication network optimiza-

tion (Rothlauf, Goldberg, & Heinzl, 2000), and silicon cluster optimization (Sastry, 2001a). Later

(see chapters 5 and 6) we will see how hierarchical decomposition can be used to further extend the

applicability of BOA beyond problems decomposable into tractable subproblems on a single level.

2.4 Other Representations

There are two basic approaches to extending PMBGAs for discrete fixed-length strings to other

domains such as variable-length strings, vectors of real numbers, symbolic expressions, and program

codes:

1. Map the problem to the domain of fixed-length discrete strings, solve the discrete problem,

and map the solution back to the problem’s original domain.

2. Extend or modify the class of probabilistic models to other domains.

The first approach requires the design of different techniques for mapping one domain to another;

such techniques have been studied in the context of genetic and evolutionary algorithms for sev-

eral decades. This section reviews PMBGAs based on the second approach. The section starts

with an overview of PMBGAs for optimizing problems over the fixed-length vectors of real-valued

variables. Subsequently, the section discusses PMBGAs for optimizing computer programs and

symbolic expressions.

2.4.1 Real-valued Variables

There are many approaches to modeling and sampling real-valued distributions. One way of classi-

fying these approaches considers the number of variables that are treated together; some approaches

build a separate model for each variable (like PBIL), whereas other approaches model groups of

variables or all variables together (like ECGA or BOA). Another way of classifying real-valued

PMBGAs focuses on the type of distributions that are used to model each variable or each group

of variables; real-valued models include normal distributions, joint normal distributions, histogram

39

Figure 2.5: The product of one-dimensional Gaussian distributions as used in the stochastic hill-
climbing with learning by vectors of normal distributions (SHCLVND) of Rudlof et al. (1996).
Each variable is modeled by a normal distribution, and the overall distribution is given by the
product of the individual distributions for each variable.

distributions, uniform distributions over intervals, mixture distributions, and others. This sec-

tion starts by presenting PMBGAs based on normal distributions. Next, the section discusses

real-valued PMBGAs based on histogram and interval distributions.

Single-Peak Normal Distributions

The stochastic hill climbing with learning by vectors of normal distributions (SHCLVND) (Rudlof

& Köppen, 1996) is a straightforward extension of PBIL to vectors of real-valued variables using

a normal distribution to model each variable. SHCLVND replaces the population of real-valued

solutions by a vector of means μ = (μ1, . . . , μn), where μi denotes a mean of the distribution for the

ith variable. The same standard deviation σ is used for all variables. See Figure 2.5 for an example

model. Each generation, a random set of solutions is first generated according to μ and σ. The

best solution out of this subset is then used to update the entries in μ by shifting each μi toward

the value of ith variable in the best solution using a similar update rule as in PBIL. Additionally,

each generation reduces the standard deviation to make the future exploration of the search space

narrower. A similar algorithm was independently developed by Sebag and Ducoulombier (1998),

who also discussed several approaches to evolving a standard deviation for each variable.

40

Mixtures of Normal Distributions

The probability density function of a normal distribution is centered around its mean and decreases

exponentially with the distance from the mean. If there are multiple “clouds” of values, a normal

distribution must either focus on only one of these clouds, or it can embrace multiple clouds at

the expense of including the area between these clouds. In both cases, the resulting distribution

cannot model the data accurately. One way of extending normal distributions to enable coverage

of multiple groups of similar points is to use a mixture of normal distributions. Each component

of a mixture of normal distributions is a normal distribution by itself. A coefficient is specified

for each component of the mixture to denote the probability that a random point belongs to this

component. The probability density function of a mixture is thus computed by multiplying the

density function of each mixture component by the probability that a random point belongs to the

component, and adding these weighted densities together.

Gallagher, Frean, and Downs (1999) extended PMBGAs using single-peak normal distributions

by using an adaptive mixture of normal distributions to model each variable. The parameters

of a mixture (including the number of components) evolve based on the discovered promising

solutions. Using mixture distributions is a significant improvement compared to single-peak normal

distributions, because mixtures allow simultaneous exploration of multiple basins of attraction for

each variable.

Joint Normal Distributions and Their Mixtures

What changes when instead of fitting each variable with a separate normal distribution or a mixture

of normal distributions, groups of variables are considered together? Let us first consider using a

single-peak normal distribution. In multivariate domains, a joint normal distribution can be defined

by a vector of n means (one mean per variable) and a covariance matrix of size n×n. Diagonal el-

ements of a covariance matrix specify the variances for all variables, whereas nondiagonal elements

specify linear dependencies between pairs of variables. Considering each variable separately corre-

sponds to setting all nondiagonal elements in a covariance matrix to 0. Using different deviations

for different variables allows for “squeezing” or “stretching” the distribution along the axes. On

the other hand, using nondiagonal entries in the covariance matrix allows rotating the distribution

41

(a) Diagonal covariance matrix. (b) Full covariance matrix.

Figure 2.6: A joint normal distribution. The left-hand side shows a joint normal distribution with
only diagonal entries in the covariance matrix; all remaining entries in the covariance matrix are
set to 0. The right-hand side shows a joint normal distribution that includes also the covariance
between the two variables, which allows rotating the distribution around its mean.

around its mean. Figure 2.6 illustrates the difference between a joint normal distribution using

only diagonal elements of the covariance matrix and a distribution using the entire covariance ma-

trix. Therefore, using a covariance matrix introduces another degree of freedom and improves the

expressiveness of a distribution. Again, one can use a number of joint normal distributions in a

mixture, each component with its own covariance matrix and weight.

A joint normal distribution including a full or partial covariance matrix was used within the

IDEA framework (Bosman & Thierens, 2000a) and in the estimation of Gaussian networks algo-

rithm (EGNA) (Larranaga, Etxeberria, Lozano, & Pena, 2000b). Both these algorithms can be

seen as an extension of PMBGAs that model each variable by a single normal distribution to use

also nondiagonal elements in the covariance matrix.

Bosman and Thierens (2000b) proposed mixed IDEAs as an extension of PMBGAs that use a

mixture of normal distributions to model each variable. Mixed IDEAs allow multiple variables to

be modeled by a separate mixture of joint normal distributions. At one extreme, each variable can

have a separate mixture; at another extreme, one mixture of joint distributions covering all the

variables is used. Despite that learning such a general class of distributions is quite difficult and a

large number of samples is necessary for reasonable accuracy, good results were reported on single-

42

Figure 2.7: A joint normal kernels distribution is a mixture of joint normal distributions, where a
special mixture component is reserved for each point in the modeled data.

objective (Bosman & Thierens, 2000b) as well as multiobjective problems (Thierens & Bosman,

2001). Using mixture models for all variables was also proposed as a technique for reducing model

complexity in discrete PMBGAs (Pelikan & Goldberg, 2000a).

Within the IDEA framework, Bosman and Thierens (2000a) proposed IDEAs using joint normal

kernels distributions, where a single normal distribution is placed around each promising solution

(see Figure 2.7). A joint normal kernels distribution can be therefore seen as an extreme use of

mixture distributions with one mixture component per point in the training sample. The variance

of each normal distribution can be either fixed to a relatively small value, but it should be preferable

to adapt variances to the current state of search. Using kernel distributions corresponds to using

a fixed zero-mean normally distributed mutation for each promising solution as is often done in

evolution strategies (Rechenberg, 1973). That is why it is possible to directly take up strategies

for adapting the variance of each kernel from evolution strategies (Rechenberg, 1973; Rechenberg,

1994; Schwefel, 1977; Hansen, Ostermeier, & Gawelczyk, 1995).

Real-valued PMBGAs presented so far are applicable real-valued optimization problems without

requiring differentiability or continuity of the underlying problem. However, if it is possible to at

least partially differentiate the problem at hand, gradient information can be used to incorporate

some form of gradient-based local search and the performance of real-valued PMBGAs can be

significantly improved. A study on combining real-valued PMBGAs within the IDEA framework

with gradient-based local search can be found in Bosman and Thierens (2001).

43

To summarize, the following questions are important in the design of real-valued PMBGAs

using normal distributions or mixtures of normal distributions:

• Decomposition? Use a separate distribution estimate for each variable, or consider groups

of variables together?

• Covariances? If considering multiple variables together, use a diagonal, partial, or full

covariance matrix?

• Mixtures? Use one-peak normal distribution, or a mixture of normal distributions?

• Kernels? Use a mixture of normal distributions with one component per solution (joint

normal kernels distribution), or attempt to create a global model that generalizes the data

globally?

Different models might be advantageous for different types of problems. For successful application of

real-valued PMBGAs based on normal distributions it is important to consider the above questions

and make decisions based on the properties of the problem at hand. For example, if the problem at

hand is highly multimodal, using a single-peak distribution will most likely not work; however, if

there are extremely many local optima, using single-peak distributions could generalize the problem

landscape and avoid getting stuck in a local optimum. Furthermore, it is important to consider the

choice of a distribution to set a population size and other parameters. For example, while for joint

normal kernels distributions populations of only few points might suffice, for adapting complex

multivariate mixture distributions a rather large sample is required.

Other Real-valued PMBGAs

Of course, using normal distributions is not the only one way of modeling real-valued distributions.

Other density functions are frequently used in practice, including histogram distributions, interval

distributions, and others. The discussion of PMBGAs that use other than normal distributions

follows.

In the algorithm proposed by Servet, Trave-Massuyes, and Stern (1997), an interval (ai, bi) and

a number zi ∈ (0, 1) are stored for each variable (see Figure 2.8). By zi, the probability that the

ith variable is in the lower half of (ai, bi) is denoted. Each zi is initialized to 0.5. To generate a new

44

1 2 3 4 5
aaaa b b b b1 23 4 2431

Variable 3

Variable 2

Variable 1

Variable 4 z

z

z

z1

3

4

2

Figure 2.8: A model based on adaptive intervals (Servet et al., 1998).

candidate solution, the value of each variable is selected randomly from the corresponding interval.

The best solution is then used to update the value of each zi. If the value of the ith variable of

the best solution is in a lower half of (ai, bi), zi is shifted toward 0; otherwise, zi is shifted toward

1. When zi gets close to 0, interval (ai, bi) is reduced to its lower half; if zi gets close to 1, interval

(ai, bi) is reduced to its upper half. Figure 2.8 shows an example probabilistic model based on

adaptive intervals; in the figure, each zi is mapped to the corresponding interval (ai, bi).

Bosman and Thierens (2000a), Tsutsui, Pelikan, and Goldberg (2001) and Cantú-Paz (2001)

use empirical histograms to model each variable as opposed to using a single normal distribution

or a mixture of normal distributions. In these approaches, a histogram for each single variable is

constructed. New points are then generated according to the distribution encoded by the histograms

for all variables. Figure 2.9 shows examples of fixed-height and fixed-width histograms. The

sampling of a histogram proceeds by first selecting a particular bin based on its relative frequency,

and then generating a random point from the interval corresponding to the bin. It is straightforward

to replace the histograms in the above methods by various classification and discretization methods

of statistics and machine learning (such as k-means clustering).

Pelikan, Goldberg, and Tsutsui (2001) use an adaptive mapping from the continuous domain

to the discrete one in combination with linkage learning in the discrete domain. The population of

promising solutions is first discretized by using equal-width histograms, equal-height histograms,

k-means clustering, or other classification techniques. A population of promising discrete solutions

is then selected. New points are created by applying a discrete recombination operator capable

of linkage learning (such as BOA) to the selected population of promising discrete solutions. The

45

f

x

(a) Fixed-width histogram.

x

f

(b) Fixed-height histogram.

Figure 2.9: Fixed-width and fixed-height histograms. In a fixed-width histogram, each bin has equal
width, and the height of each bin determines the number of points in that bin. In a fixed-height
histogram, the width of each bin is set so that each bin contains the same number of points.

resulting discrete solutions are then mapped back into the continuous domain by sampling each

class (a bin or a cluster) using the original values of the variables in the selected population of

continuous solutions (before discretization). The resulting solutions are mutated using one of the

adaptive mutation operators of evolution strategies (Rechenberg, 1973; Rechenberg, 1994; Schwefel,

1977; Hansen, Ostermeier, & Gawelczyk, 1995). In this way, competent discrete PMBGAs can be

combined with advanced methods based on adaptive local search in the continuous domain.

2.4.2 Computer Programs

Genetic programming (Koza, 1992; Koza, 1994) evolves a population of computer programs using

variants of crossover and mutation appropriate to a program code. Programs are represented by

labeled trees. Internal nodes of a program tree correspond to functions with at least one argument,

the successors (children) of an internal node represent arguments of the function encoded in the

node, and leaves of a program tree corresponds to terminal symbols (functions with no arguments,

variables, or constants).

Since the context of different parts of a program usually matters a great deal, it should be

advantageous to use competent PMBGAs capable of linkage learning in the domain of genetic pro-

gramming. However, using PMBGAs for genetic programming poses two challenges: (1) computer

programs are not linear structures, and (2) the length of computer programs can vary. The remain-

46

0.1
0.2
0.2
0.1

0.4
0.3
0.2
0.1
0.3

0.1
0.2
0.1
0.2
0.4

0.1
0.3
0.1
0.3
0.2

0.1

0.3
0.1
0.3
0.1

0.2
0.3
0.2
0.0
0.3

0.2

+
−
cos
sin
x

0.1
0.2
0.2
0.1

0.4

Probabilities

+

sin

x x

+

x

+
−
cos
sin
x

0.1
0.2
0.2
0.1

0.4

Probabilities

+
−
cos
sin
x

Probabilities

+
−
cos
sin
x

Probabilities

+
−
cos
sin
x

Probabilities

+
−
cos
sin
x

Probabilities

+
−
cos
sin
x

Probabilities

+
−
cos
sin
x

Probabilities

Candidate solution
Probabilistic model

Figure 2.10: This figure shows an example probabilistic model of a program with no interactions
covered used in PIPE and a candidate solution (mathematic expression) generated by the model.
Each node in the model stores a probability of each instruction and terminal symbol. The simulation
proceeds by deciding whether to terminate in each node or not. If the node is not terminated, the
probabilities of different operators and terminals are used to generate a value or a function in the
node.

der of this section presents several approaches to applying PMBGAs to genetic programming.

Probabilistic incremental program evolution (PIPE) (Salustowicz & Schmidhuber, 1997a; Salus-

towicz & Schmidhuber, 1997b) uses a probabilistic model in the form of a tree of a specified maxi-

mum allowable size. Nodes in a model specify the probabilities for different functions and terminals.

PIPE does not employ any interactions among the nodes in a model. To visualize the model used

in PIPE, see Figure 2.10. The model is updated by adapting the probabilities based on the new

promising solutions. To sample new program trees, the generation starts in the root and continues

down as necessary. In particular, if the model generates a function in some node and that func-

tion requires additional arguments, the successors (children) of the node are generated to form the

arguments of the function. If a terminal is generated, the generation along the considered branch

terminates.

A hierarchical extension of PIPE—the so-called H-PIPE—has been later proposed by Salus-

towicz and Schmidhuber (1998). In H-PIPE, nodes of a model are allowed to contain subroutines.

Both the subroutines and the overall program are evolved.

Handley (1994) uses directed acyclic graphs to represent the population of programs (trees) in

47

genetic programming. Although the goal of this work was to compress the population of computer

programs in genetic programming, Handley’s approach can be used within the PMBGA framework

to model and sample candidate solutions represented by computer programs or symbolic expres-

sions.

Using advanced probabilistic models in genetic programming is a challenging area, because

optimization of program codes and symbolic expressions is difficult and the need for effective ex-

ploration necessitates learning semantics of the used representation and its effects on performance of

candidate programs. Furthermore, the task of building and sampling probabilistic models becomes

much more difficult when using the complex representation of genetic programming.

2.5 Summary

This chapter motivated the use of probability distributions to combine bits and pieces of promising

solutions. Additionally, the chapter provided a survey of probabilistic model-building genetic al-

gorithms, which use probabilistic models to bias the sampling in optimization. A summary of the

key points of this chapter follows:

• Probabilistic model-building genetic algorithms (PMBGAs) replace crossover and mutation

of traditional GAs by (1) building a probabilistic model for the promising solutions and (2)

sampling the built model to generate new solutions. PMBGAs are sometimes called estimation

of distribution algorithms (EDAs) and iterated density estimation algorithms (IDEAs).

• Probabilistic models are a general tool for encoding a problem decomposition. The effects of

a model that assumes no dependencies at all are similar to those of uniform crossover. On

the other hand, if a probabilistic model encodes all possible dependencies, no recombination

takes place. It is necessary that PMBGAs be capable of learning a model that encodes a

proper, non-misleading, decomposition of the problem.

• Learning a probabilistic model corresponds to learning a proper problem decomposition. Sam-

pling the constructed model corresponds to combining promising solutions according to a

decomposition encoded by the model.

48

• PMBGAs for discrete domains can be classified according to the complexity of the models

they use:

1. No interactions. PMBGAs that use models with no interactions can solve linear

problems very fast, but they achieve poor performance on more complex problems with

strong interactions of high order.

2. Some pairwise interactions. PMBGAs that use models in the form of a chain, tree,

or forest can process some partial solutions of order two. That extends the domain of

problems that can be solved by PMBGAs in a scalable manner, but is still insufficient

to ensure that PMBGAs can solve arbitrary problems of bounded difficulty.

3. Multivariate interactions. PMBGAs that use models with multivariate interactions

can solve any problem decomposable into subproblems of bounded order. However, using

complex models also introduces additional computational overhead.

• There are two basic approaches to extending discrete PMBGAs to other domains: (1) map

solutions from the other domain to discrete fixed-length strings over a finite-sized alphabet,

and (2) extend or modify models to allow for the modeling and sampling of solutions in the

other domain.

• Most PMBGAs for optimizing real-valued problems are based on normal distributions and

mixtures of normal distributions. Other real-valued PMBGAs use adaptive intervals, his-

tograms, clustering, and other classification techniques. Classification techniques can also be

used to combine optimization methods for real-valued and discrete optimization to combine

the best of both worlds.

• Designing PMBGAs for optimization of computer programs of genetic programming is an

important challenge. Advanced probabilistic models of computer programs can be expected

to improve the performance and scalability of genetic programming.

49

Chapter 3

Bayesian Optimization Algorithm

The previous chapter showed that using probabilistic models with multivariate interactions is a

powerful approach to solving problems of bounded difficulty. For efficient and scalable optimization,

a model must be learned that encodes a proper decomposition of the problem. The Bayesian

optimization algorithm (BOA) combines the idea of using probabilistic models to guide optimization

and the methods for learning Bayesian networks. To learn a proper decomposition of the problem,

BOA builds a Bayesian network for the set of promising solutions. New candidate solutions are

generated by sampling the built network.

The purpose of this chapter is threefold. First, the chapter describes the Bayesian optimization

algorithm (BOA), which uses Bayesian networks to model promising solutions and bias the sampling

of new candidate solutions. Second, the chapter describes how to learn and sample Bayesian

networks. Third, the chapter tests the proposed algorithm on a number of challenging decomposable

problems.

The chapter starts by describing the basic procedure of BOA. Section 3.2 provides background

of Bayesian networks and their semantics in BOA. Section 3.3 discusses the problem of learning the

structure and parameters of Bayesian networks given a sample from an unknown target distribution.

The section provides two approaches to measuring the quality of each candidate model: (1) Bayesian

metrics and (2) minimum description length metrics. Additionally, the section describes a greedy

algorithm for learning the structure of Bayesian networks by repeated application of primitive graph

operations. Section 3.4 describes a method for sampling the learned Bayesian network to generate

new candidate solutions. Section 3.5 presents initial experimental results indicating good scalability

of BOA on problems of bounded difficulty. Finally, Section 3.6 summarizes the chapter.

50

Bayesian Optimization Algorithm (BOA)

(1) set t← 0

randomly generate initial population P (0)

(2) select a set of promising strings S(t) from P (t)

(3) construct the network B using a chosen metric and constraints

(4) generate a set of new strings O(t) according to the joint distribution encoded by B

(5) create a new population P (t + 1) by replacing some strings from P (t) with O(t)

set t← t + 1

(6) if the termination criteria are not met, go to (2)

Figure 3.1: The pseudo-code of the Bayesian optimization algorithm (BOA).

3.1 Description of BOA

The Bayesian optimization algorithm (BOA) (Pelikan, Goldberg, and Cantú-Paz, 1998, 1999,

2000b) evolves a population of candidate solutions to a given problem by building and sampling

Bayesian networks. BOA can be applied to the problems where candidate solutions are represented

by fixed-length strings over a finite alphabet, but for the sake of simplicity, only binary strings will

be considered in most of this chapter.

BOA generates the initial population of strings at random with a uniform distribution over

all possible strings. The population is updated for a number of iterations (generations), each

consisting of four steps. First, promising solutions are selected from the current population using

a GA selection method, such as tournament and truncation selection. Second, a Bayesian network

that fits the population of promising solutions is constructed. Third, new candidate solutions

are generated by sampling the built Bayesian network. Fourth, the new candidate solutions are

incorporated into the original population, replacing some of the old ones or all of them.

The above four steps are repeated until some termination criteria are met. For instance, the

run can be terminated when the population converges to a singleton, the population contains a

good enough solution, or a bound on the number of iterations has been reached. The pseudo-code

of BOA is shown in Figure 3.1.

51

There are a number of alternative ways to perform each step. The initial population can be

biased according to a prior knowledge about the problem (Schwarz & Ocenasek, 2000; Sastry,

2001a). Selection can be performed using any popular selection method. Various algorithms can

be used to construct a model and a method for measuring the quality of each candidate model

can also be chosen arbitrarily. Additionally, the measure of model quality can incorporate prior

information about the problem to enhance the estimation and, as a consequence, to improve the

efficiency.

The next section describes Bayesian networks and their semantics. The section then discusses

techniques for learning and utilization of Bayesian networks.

3.2 Bayesian Networks

A Bayesian network (Howard & Matheson, 1981; Pearl, 1988) is defined by two components:

(1) Structure. The structure is encoded by a directed acyclic graph with the nodes corresponding

to the variables in the modeled data set (in this case, to the positions in solution strings) and

the edges corresponding to conditional dependencies.

(2) Parameters. The parameters are represented by a set of conditional probability tables spec-

ifying a conditional probability for each variable given any instance of the variables that the

variable depends on.

Mathematically, a Bayesian network encodes a joint probability distribution given by

p(X) =
n−1∏
i=0

p(Xi|Πi), (3.1)

where X = (X0, . . . ,Xn−1) is a vector of all the variables in the problem; Πi is the set of parents

of Xi in the network (the set of nodes from which there exists an edge to Xi); and p(Xi|Πi) is the

conditional probability of Xi given its parents Πi.

A directed edge relates the variables so that in the encoded distribution, the variable corre-

sponding to the terminal node is conditioned on the variable corresponding to the initial node.

More incoming edges into a node result in a conditional probability of the variable with a conjunc-

52

Rain Wet road

Accident

Radar Speed

Figure 3.2: An example Bayesian network structure.

Accident Wet Road Speed p(Accident|Wet Road,Speed)
Yes Yes High 0.18
Yes Yes Low 0.04
Yes No High 0.06
Yes No Low 0.01
No Yes High 0.82
No Yes Low 0.96
No No High 0.94
No No Low 0.99

Table 3.1: If we encode the speed of a car using two values (high and low), the conditional proba-
bility table for the probability of an accident could look as shown in this table. Note that the last
four entries in the table are unnecessary, because they can be computed using the remaining ones
(all conditional probabilities with a fixed conditions must sum to 1).

tional condition containing all its parents. In addition to encoding dependencies, each Bayesian

network encodes a set of independence assumptions. Independence assumptions state that each

variable is independent of any of its antecedents in the ancestral ordering, given the values of the

variable’s parents.

A simple example Bayesian network structure is shown in Figure 3.2. The example network en-

codes a number of conditional dependencies. For instance, the speed of the car depends on whether

it is raining and/or radar is enforced. The road is most likely wet if it is raining. Additionally,

the network encodes a number of simple and conditional independence assumptions. For instance,

the radar enforcement is independent of whether it is raining or not. A more complex conditional

independence assumption is that the probability of an accident is independent of whether the radar

is enforced, given a particular speed and whether the road is wet. To fully specify the Bayesian

network with the structure shown in the figure, it would be necessary to add a table of conditional

probabilities for each variable. An example conditional probability table is shown in Table 3.1.

53

(a) No interactions. (b) Separable blocks of order 4.

Figure 3.3: A good model for the case of a problem with no interactions and a problem with
separable subproblems of order 4.

It is important to understand the semantics of Bayesian networks in the framework of PMBGAs.

Conditional dependencies will cause the involved variables to remain in the configurations seen in

the selected population of promising solutions. On the other hand, conditional independencies lead

to the mixing of bits and pieces of promising solutions in some contexts (the contexts are determined

by the variables in the condition of the independency). The complexity of a proper model is directly

related to a proper problem decomposition discussed in Chapter 1. If the problem was linear, a

good network would be the one with no edges (see Figure 3.3(a)); the effects of using an empty

network are the same as those of using population-wise uniform crossover. On the other hand, if

the problem was composed of traps of order k, the network should be composed of fully connected

sets of k nodes, each corresponding to one trap, with no edges between the different groups (see

Figure 3.3(b)); the effects of using such a model would be the same as those of population-wise

building-block crossover. More complex problems lead to more complex models, although many

problems can be solved with quite simple networks despite the presence of nonlinear interactions

of high order.

The following section discusses how Bayesian networks can be learned given a data set. Sub-

sequently, we provide a simple method called forward simulation, which can be used for sampling

the distribution encoded by a given Bayesian network and its parameters.

54

3.3 Learning Bayesian Networks

For a successful application of BOA, it is necessary that BOA is capable of learning a network that

reflects the dependencies and independencies that decompose the problem at hand properly. There

are two subtasks of learning a Bayesian network:

(1) Learning the structure. First, the structure of a network must be determined. The structure

defines conditional dependencies and independencies encoded by the network.

(2) Learning the conditional probabilities. The structure also identifies conditional probabil-

ities that must be specified for a complete model. After learning the structure, the values of

the conditional probabilities with respect to the final structure must be learned.

In BOA, learning the parameters for a given structure is simple, because the value of each

variable in the population of promising solutions is specified; in other words, the data is complete.

To maximize the likelihood of the model with a fixed structure and complete data, the probabilities

should be set according to the relative frequencies observed in the modeled data (in our case, the

selected set of promising solutions). Thus, the parameters can be learned by iterating through all

selected solutions and computing relative frequencies of different partial solutions.

As an example of learning the parameters of a Bayesian network, recall probabilistic uniform

crossover, which can be represented by a Bayesian network with no edges. The parameters of

an empty network consist of the probabilities of different values for each variable. Therefore, to

determine the parameters of an empty network, it is sufficient to parse the population of promising

solutions and compute the observed probabilities.

Learning the structure is a much more difficult problem. The algorithms for learning the

structure of Bayesian networks have two components:

1. A scoring metric. A scoring metric measures quality of Bayesian network structures. In

GA terminology, the scoring metric specifies the fitness of a structure. Usually, a scoring

metric is proportional to the likelihood of the structure or it is equal to a combination of the

likelihood and some penalty for complex models. However, other measures can be used, such

as statistical tests on independence.

55

2. A search procedure. A search procedure searches the space of all possible network struc-

tures to find the best network with respect to a given scoring metric. The space of network

structures can be restricted according to a bound on the complexity of networks or some

other prior problem-specific knowledge.

Next, the section discusses several approaches to evaluating competing network structures.

Subsequently, the section describes a greedy algorithm, which can be used to learn the structure of

a Bayesian network given a scoring metric.

3.3.1 Scoring Metric

There are two approaches to measuring quality of competing network structures: (1) Bayesian

metrics, and (2) minimum description length metrics. Bayesian metrics (Cooper & Herskovits,

1992; Heckerman, Geiger, & Chickering, 1994) measure the quality of each structure by computing a

marginal likelihood of the structure with respect to given data and inherent uncertainties. Minimum

description length metrics (Rissanen, 1978; Rissanen, 1989; Rissanen, 1996) are based on the

assumption that the number of regularities in the data encoded by a model is somehow proportional

to the amount of compression of the data allowed by the model.

Bayesian Metrics

Bayesian metrics (Cooper & Herskovits, 1992; Heckerman, Geiger, & Chickering, 1994) account for

the uncertainty of network structures and their parameters by using Bayes rule and assigning prior

distributions to both network structures as well as the parameters of each structure. The quality

of a structure is measured by the marginal likelihood of the structure with respect to the given

data. The marginal likelihood is computed by averaging the likelihood of the models conditioned

on the observed data according to a prior distribution over all possible conditional probabilities in

the model:

p(B|D) =
p(B)
p(D)

∫
θ
p(θ|B)p(D|B, θ) dθ, (3.2)

where B is the evaluated Bayesian network structure (without parameters); D is the data set; and

each value of θ represents one possible way of assigning conditional probabilities in the network B.

Furthermore, p(B) is the prior probability of the network structure B, p(θ|B) is the prior probability

56

of parameters θ (conditional probabilities) given B, and p(D|B, θ) denotes the probability of D given

the network structure B and its parameters θ. Since the probability of data denoted in the last

equation by p(D) is the same for all network structures, p(D) is usually omitted when evaluating

the structures.

To compute the marginal likelihood, a prior probability distribution over the parameters of

each structure must be given. The Bayesian-Dirichlet metric (BD) (Cooper & Herskovits, 1992;

Heckerman, Geiger, & Chickering, 1994) assumes that the conditional probabilities follow Dirichlet

distribution and makes a number of additional assumptions, yielding the following score:

BD(B) = p(B)
n∏

i=1

∏
πi

Γ(m′(πi))
Γ (m′(πi) + m(πi))

∏
xi

Γ (m′(xi, πi) + m(xi, πi))
Γ(m′(xi, πi))

, (3.3)

where p(B) is the prior probability of the network structure B; the product over xi runs over all

instances of xi (in the binary case these are 0 and 1); the product over πi runs over all instances of

the parents Πi of Xi (all possible combinations of values of Πi); m(πi) is the number of instances

with the parents Πi set to the particular values given by πi; and m(xi, πi) is the number of instances

with Xi = xi and Πi = πi. Terms m′(πi) and m′(xi, πi) denote prior information about the statistics

m(πi) and m(xi, πi), respectively. Here we consider K2 metric, which uses an uninformative prior

that assigns m′(xi, πi) = 1 and m′(πi) =
∑

xi
m′(xi, πi).

A prior distribution over network structures specified by term p(B) can bias the construction

toward particular structures by assigning higher prior probabilities to those preferred structures.

Prior knowledge about the structure permits the assignment of higher prior probabilities to those

networks similar to the structure believed to be close to the correct one (Heckerman, Geiger, &

Chickering, 1994). The search can also be biased toward simpler models by assigning higher prior

probabilities to models with fewer edges or parameters (Chickering, Heckerman, & Meek, 1997;

Friedman & Goldszmidt, 1999; Pelikan, Goldberg, & Sastry, 2001). If there is no prior information

about the network structure, the probabilities p(B) are set to a constant and omitted in the

construction (uniform prior).

For further details on Bayesian metrics, please refer to Cooper and Herskovits (1992) and

Heckerman, Geiger, and Chickering (1994).

57

Minimum Description Length Metrics

Minimum description length metrics (Rissanen, 1978; Rissanen, 1989; Rissanen, 1996) are based

on the assumption that the number of regularities in the data encoded by a model is somehow

proportional to the amount of compression of the data allowed by the model. A model that results

in the highest compression should therefore encode the most regularities. There are two major

approaches to the design of MDL metrics. The first is based on a two-part coding where the score

is negatively proportional to the sum of the number of bits required to store the (1) model, and (2)

data compressed according to the model. The second approach is based on universal code, which

normalizes the conditional probability of data given a model by the sum of the probabilities of all

data sequences given the model. The normalized probability of the data is used as the basis for

computing the number of bits required to compress the data.

In this work we consider one of the two-part MDL metrics called the Bayesian information cri-

terion (BIC) (Schwarz, 1978) used previously in the extended compact genetic algorithm (ECGA)

(Harik, 1999) and the estimation of Bayesian networks algorithm (EBNA) (Larranaga, Etxeberria,

Lozano, & Pena, 2000a). In the binary case, BIC assigns the network structure a score

BIC(B) =
n∑

i=1

(
−H(Xi|Πi)N − 2|Πi| log2(N)

2

)
, (3.4)

where H(Xi|Πi) is the conditional entropy of Xi given its parents Πi; n is the number of variables;

and N is the population size (the size of the training data set). The conditional entropy H(Xi|Πi)

is given by

H(Xi|Πi) = −
∑
xi,πi

p(xi, πi) log2 p(xi|πi), (3.5)

where p(xi, πi) is the observed probability of instances with Xi = xi and Πi = πi; and p(xi|πi) is

the conditional probability of instances with Xi = xi given that Πi = πi.

H(Xi|Πi) denotes the average number of bits required to store a value of Xi given a value of Πi.

BIC multiplies the entropy H(Xi|Πi) by the population size N to reflect the number of bits required

to store the entire population. The term log2(N) denotes the number of bits required to store one

parameter of the model (one probability or frequency). The number of bits required to store each

parameter is divided by two because only half of the bits really matter in practice (Friedman &

58

Yakhini, 1996). The term with the conditional entropy ensures that the more the information

about the parents of a variable enables to compress the values of the variable, the higher the value

of the BIC metric. The term with the log2(N) introduces the pressure toward simpler models

by decreasing the metric in proportion to the number of parameters required to fully specify the

network.

For further details on the minimum description length metrics, please see Rissanen (1996)

and Grünwald (1998).

According to our experience, Bayesian metrics tend to be too sensitive to noise in the data and

often capture unnecessary dependencies. To avoid overly complex models, the space of network

structures must usually be restricted by specifying a maximum order of interactions (Heckerman,

Geiger, & Chickering, 1994; Pelikan, Goldberg, & Cantú-Paz, 2000b). On the other hand, MDL

metrics favor simple models so that no unnecessary dependencies need to be considered. In fact,

MDL metrics often result in overly simple models and require large populations to learn a model

that captures all necessary dependencies.

3.3.2 Search Procedure

Learning the structure of a network given a scoring metric is a difficult combinatorial problem.

In fact, it has been shown that finding the best network is NP-complete for most Bayesian and

non-Bayesian metrics (Chickering, Geiger, & Heckerman, 1994); therefore, there is no known

polynomial-time algorithm for finding the best network structure with respect to most scoring

metrics. However, a simple greedy algorithm (Heckerman, Geiger, & Chickering, 1994) often per-

forms well and has been successfully used in a number of difficult machine learning tasks.

The greedy algorithm performs an elementary graph operation that improves the quality of the

current network the most until no more improvement is possible. The network structure can be

initialized to the graph with no edges or the best tree graph computed using the polynomial-time

maximum branching algorithm (Edmonds, 1967). In BOA, the initial structure can be also set to

the structure learned in the previous generation. In all experiments presented in this thesis, the

network is constructed from an empty network in every generation. There are three elementary

operations that can be used:

59

The greedy algorithm for network construction

(1) initialize the network B (e.g., to an empty network)

(2) choose all simple graph operations that can be performed on the network without violating
the constraints

(3) pick the operation that increases the score of the network the most

(4) perform the operation picked in the previous step

(5) if the network can no longer be improved under given constraints on its complexity or a
maximal number of interactions has been reached, finish

(6) go to 2

Figure 3.4: The pseudo-code of the greedy algorithm for learning the structure of Bayesian networks.

1. Edge addition. An edge is added into the network to add a new dependency.

2. Edge removal. An existing edge is removed from the current network to remove an existing

dependency and introduce a new independence assumption or make an existing independence

assumption stronger.

3. Edge reversal. An existing edge is reversed to change the character of the corresponding

dependency. Each edge reversal can be replaced by first removing the edge and then adding

the reversed edge in its place.

The search is terminated when there is no operation that can improve the score of the current

metric. It is necessary to ensure that after each performed operation on the network structure, the

resulting graph represents a valid Bayesian network structure. Consequently, the operations that

introduce cycles in the structure must be eliminated. Additionally, it is useful to limit the number

of edges that end in any node to upper-bound the complexity of the final structure. Figure 3.4

shows the pseudo-code of the greedy algorithm described above. Figure 3.5 shows an example

sequence of operators to learn the Bayesian network structure from Figure 3.2.

At the beginning of this section we said that searching for the best Bayesian network is NP-

complete. This leads to an interesting observation: BOA is a search algorithm that uses another

search algorithm, BOA searches within a search. Why should the problem of learning the structure

60

Rain Wet road

Accident

Radar Speed

Rain Wet road

Accident

Radar Speed

Rain Wet road

Accident

Radar Speed

Rain Wet road

Accident

Radar Speed

Rain Wet road

Accident

Radar Speed

Rain Wet road

Accident

Radar Speed

Figure 3.5: An example sequence of steps leading to the network structure shown earlier in Fig-
ure 3.2. For the sake of simplicity, only edge additions are used in this example.

of Bayesian networks be simpler than the original optimization problem BOA attempts to solve? It

is premature to discuss this topic in great detail, but theoretical results of chapter 4 will show that

even if the subproblems in a proper problem decomposition deceive GAs away from the optimum,

the signal for constructing a Bayesian network will still lead in the right direction. The reason

for this is that the search for a good model does not attempt to solve the optimization problem,

but instead it learns interactions between the variables in a performance measure for the problem.

Furthermore, BOA does not require the best network, it only needs a network that encodes all

important interactions in a problem (or most of them). In addition to the these two arguments, an

array of results presented throughout this thesis will support the above claim empirically.

3.4 Sampling a Bayesian Network

Once the structure and parameters of a Bayesian network have been learned, new candidate solu-

tions are generated according to the distribution encoded by the learned network (see Equation 3.1).

The sampling can be done by forward simulation of Bayesian networks (Henrion, 1988), which

proceeds in two steps. The first step computes an ancestral ordering of the nodes, where each node

is preceded by its parents. The basic idea is to generate the variables in a certain sequence so

that the values of the parents of each variable are generated prior to the generation of the value

of the variable itself. The pseudo-code of the algorithm for computing an ancestral ordering of the

variables is shown in Figure 3.6.

61

The algorithm for creating the ancestral ordering of the variables

(1) Mark all the variables as unprocessed.

(2) Empty the list of ordered variables.

(3) Add any variable with marked parents at the end of the ordering and mark the variable.

(4) If any unmarked variables remain, go to 3

Figure 3.6: The pseudo-code of the algorithm for computing the ancestral ordering of the variables
in the Bayesian network.

The algorithm for sampling the Bayesian network based on forward simulation

(1) Create ancestral ordering of the variables (see Figure 3.6).

(2) Generate the values of all the variables according to the ancestral ordering using the
conditional probabilities encoded by the network.

(3) If more instances needed, go to 2.

Figure 3.7: The algorithm for sampling a given Bayesian network starts by ordering the variables
according to the dependencies, yielding an ancestral ordering. The variables of each new solution
are generated according to the ancestral ordering using conditional probabilities encoded by the
network.

In the second step, the values of all variables of a new candidate solution are generated according

to the computed ordering. Since the algorithm generates the variables according to the ancestral

ordering, when the algorithm attempts to generate the value of each variable, the parents of the

variable must have already been generated. Given the values of the parents of a variable, the

distribution of the values of the variable is given by the corresponding conditional probabilities.

The second step is executed to generate each new candidate solution. A more detailed description

of the algorithm for generating new candidate solutions is shown in Figure 3.7.

62

3.5 Initial Experiments

This section presents the results of initial experiments using BOA on the aforementioned linear

and trap problems. Additionally, BOA is tested on a composed deceptive function of order 3. All

tested problems are of bounded difficulty—they can be decomposed into subproblems of bounded

order. The performance of BOA is compared to that of the simple GA with uniform crossover and

the stochastic hill climber using bit-flip mutation.

First, test problems are reviewed and discussed briefly. Next, experimental methodology is

provided. Finally, the performance of BOA on the test problems is presented and compared to that

of the simple GA with uniform crossover and the mutation-based hill climber.

3.5.1 Test Functions

Recall that onemax is defined as the sum of bits in the input binary string (see Equation 1.1).

The optimum of onemax is in the string of all 1s. Onemax is a monotone unimodal function and

therefore it is easy to optimize. The purpose of testing BOA on onemax is to show that BOA can

solve not only decomposable problems of bounded difficulty but also those problems that are simple

and can be efficiently solved by the mutation-based hill climber.

A composed trap function of order 5 is defined as the sum of single trap functions of order 5

over non-overlapping 5-bit partitions of solution strings (see Section 2.2.2 on page 27 for a detailed

definition). The partitioning in a composed trap is fixed, but there is no information about the

positions in each partition revealed to BOA. The two optima in each trap are defined as flow = 4

and fhigh = 5. Composed traps cannot be decomposed into subproblems of order lower than 5 and

therefore they can be used to analyze the scalability of BOA on nontrivial problems of bounded

difficulty.

A composed deceptive function of order 3 (Pelikan et al., 1998) is defined as the sum of single

deceptive functions of order 3 over non-overlapping 3-bit partitions of solution strings. As in com-

posed traps, the partitioning in composed deceptive functions is fixed, but there is no information

about the positions in each deceptive block revealed to BOA. The fitness contribution of each block

63

of 3 bits is given by

f3
deceptive(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.9 if u = 0

0.8 if u = 1

0 if u = 2

1 otherwise

, (3.6)

where u is the number of ones in the input block of 3 bits. The optimum of the composed deceptive

function is in the string of all 1s. Composed deceptive functions mislead selectorecombinative bias

into a local optimum in the string of all 0s if the deceptive partitions are decomposed. The composed

deceptive function represents yet another example of a nontrivial problem of bounded difficulty;

however, since the order of subproblems in composed deceptive functions is different compared to

that in composed traps, a comparison of the performance of BOA on these two functions should

reveal whether BOA’s performance depends on the order of subproblems in a proper problem

decomposition or not.

3.5.2 Experimental Methodology

For all tested problems, 30 independent runs are performed and BOA is required to find the

optimum in all the 30 runs. The performance of BOA is measured by the average number of

fitness evaluations until the optimum is found. The population size is determined empirically by a

bisection method so that the resulting population size is the minimal population size required to

ensure that the algorithm converges in all the 30 runs. There might be a 10% difference between

the optimal population size and that used in the experiments, since the bisection method is only

run until an interval with the width of at most 10% of its lower bound is found. BIC is used to

construct a Bayesian network in each generation, and the construction always starts with an empty

network.

Binary tournament selection without replacement is used in all the experiments. In most cases,

better performance could be achieved by increasing selection pressure; however, the purpose of

these experiments is not to show the best BOA performance, but to look at its scalability instead.

The number of candidate solutions generated in each generation is equal to half the population size,

and an elitist replacement scheme is used that replaces the worst half of the original population by

64

100 200 300 400 500

5000

10000

15000

20000

25000

30000

35000

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns

Experiment
O(n log(n))

Figure 3.8: The number of evaluations until BOA finds the optimum on onemax of varying problem
size averaged over 30 independent runs. The number of evaluations can be approximated by
O(n log n).

offspring (newly generated solutions).

The GA with uniform crossover is also included in some of the results. All the parameters

that overlap with BOA—except for population sizes—are set in the same fashion. Population sizes

are also determined empirically by a bisection method. To maximize the mixing on onemax, the

probability of applying crossover to each pair of parents is 1. On other problems, the crossover

probability is 0.6. No mutation is used to focus on the effects of selectorecombinative search.

The performance of the mutation-based hill climber (see Section 2.2.1) is also compared to

that of BOA and the GA with uniform crossover. The performance of the hill climber is computed

according to a Markov-chain model of Mühlenbein (1992), which provides the theory for computing

both the optimal mutation rate as well as the expected performance.

3.5.3 BOA Performance

Figure 3.8 shows the number of fitness evaluations until BOA finds the optimum of onemax. The

size of the problem ranges from n = 100 to n = 500 bits. The number of fitness evaluations can

be approximated by O(n log n). Therefore, the results indicate that BOA can solve onemax in a

near-linear number of evaluations.

Figure 3.9 shows the number of fitness evaluations until BOA finds the optimum of the composed

trap of order 5 and the composed deceptive function of order 3. The number of bits in composed

65

100 125 150 175 200 225 250

100000

150000

200000

250000

300000

350000

400000

450000
500000

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns

Experiment

O(n1.65)

(a) Composed trap of order 5.

60 90 120 150 180 210 240
25000

50000

100000

150000

200000

250000

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns

Experiment

O(n1.65)

(b) Composed deceptive function of order 3.

Figure 3.9: The number of evaluations until BOA finds the optimum on the composed trap of order
5 and the composed deceptive function of order 3. The number of evaluations can be approximated
by O(n1.65) in both cases.

traps ranges from n = 100 to n = 250 and the number of bits in composed deceptive functions ranges

from n = 60 to n = 240. In both cases, the number of fitness evaluations can be approximated

by O(n1.65). Therefore, the results indicate that BOA can solve composed trap and deceptive

functions in a subquadratic number of evaluations. Furthermore, the order of subproblems in a

proper problem decomposition does not seem to affect the order of growth of the number of fitness

evaluations.

Experiments on other decomposable problems indicate similar performance. In the case of

onemax, the performance of BOA is close to the expected performance with population-wise uni-

form crossover, which is a “perfect” crossover to use in this case. The performance gets slightly

worse for other decomposable problems where the discovery of a proper decomposition is necessary.

However, in all the cases, the number of evaluations until reaching the optimum appears to grow

subquadratically with the number of variables in the problem (problem size).

3.5.4 BOA vs. GA and Hill Climber

For onemax, both the hill climber and the simple GA with uniform crossover can be expected to

converge in O(n log n) evaluations. The performance of the simple GA can be estimated by the

66

100 200 300 400 500
1000

2000

4000

8000

16000

32000

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns
BOA
GA (uniform)

(a) BOA vs. the simple GA.

100 200 300 400 500
1000

2000

4000

8000

16000

32000

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns

BOA
Hill Climber

(b) BOA vs. the hill climber.

Figure 3.10: The comparison of BOA, the simple GA with uniform crossover, and the mutation-
based hill climber on onemax.

gambler’s ruin population-sizing model (Harik, 1999) and onemax convergence model (Mühlenbein

& Schlierkamp-Voosen, 1993). For the simple GA with one-point or n-point crossover, the perfor-

mance would get slightly worse because of slower mixing, which results in an increased number of

generations. The performance of the hill climber can be estimated using the theory of Mühlenbein

(1992).

Figure 3.10 compares the performance of the simple GA and the mutation-based hill climber

with that of BOA for onemax. In all cases, the total number of evaluations is bounded by O(n log n);

however, the performance of BOA is about 3.57-times worse than the performance of the simple

GA, and the performance of the simple GA is about 1.3-times worse than the performance of the

hill climber.

The reason for the worse performance of BOA is that onemax can be solved by processing

each bit independently, but BOA introduces unnecessary dependencies, which lead to increased

population-sizing requirements according to the gambler’s ruin model (Harik, 1999). The compar-

ison of the performances of the simple GA and the hill climber is inconclusive, because choosing

a different selection pressure would change the results of the simple GA. However, it is important

to note that the number of evaluations for all the algorithms grows as O(n lnn). That means

that even for those simple problems that are ideal for mutation and uniform crossover, the use of

67

15 25 50 100 200

10
4

10
5

10
6

10
7

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns
BOA
GA (uniform)

(a) BOA vs. the simple GA.

25 50 100 200

10
4

10
6

10
8

10
10

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns

BOA
Hill Climber

(b) BOA vs. the hill climber.

Figure 3.11: The comparison of BOA, the simple GA with uniform crossover, and the mutation-
based hill climber on the composed trap function of order 5.

sophisticated search operators of BOA does not lead to a qualitative decrease in the performance.

Figure 3.11 compares the performance of the simple GA and the mutation-based hill climber

with that of BOA for the composed trap of order 5. The performance of the GA and the hill climber

dramatically changes compared to onemax.

To solve the composed trap of order 5, the simple GA requires exponentially large popula-

tions, because mixing is ineffective and requires exponentially large populations for innovative

success (Thierens, 1995). Similar performance can be expected with other crossover methods,

because the partitions of a proper problem decomposition are not located tightly in the strings.

Already for the problem of size 50, even population sizes of a half million do not result in reliable

convergence; the figure only shows the results on problems of sizes 15, 20, and 25 bits. Therefore,

the performance of the simple GA changes from O(n log n) for onemax to O(2n) for the composed

trap.

The performance of the hill climber changes from O(n log n) for onemax to O(n5 lnn) for the

composed trap of order k = 5 (Mühlenbein, 1992). In the general case, the complexity of the hill

climber grows with the largest minimal order of building blocks k as O(nk lnn).

Similar results can be observed for the composed deceptive function of order 3 (see Figure 3.12).

68

15 30 90 150 210

10
4

10
5

10
6

10
7

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns
BOA
GA (uniform)

(a) BOA vs. the simple GA.

30 90 150 210

10
4

10
5

10
6

10
7

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns

BOA
Hill Climber

(b) BOA vs. the hill climber.

Figure 3.12: The comparison of BOA, the simple GA with uniform crossover, and the mutation-
based hill climber on the composed deceptive function of order 3.

The number of evaluations for the simple GA grows exponentially, and the number of evaluations

for the hill climber grows as O(n3 log n).

To summarize, there are three important observations:

(1) All on onemax. BOA, GA, and the hill climber find the optimum of onemax in approximately

O(n log n). However, BOA is outperformed with respect to the magnitude of the number of

evaluations.

(2) GA and the hill climber on trap and deceptive functions. The performance of the

simple GA and the mutation-based hill climber significantly suffers from an increased order

of the problem decomposition. Both algorithms become intractable for problems of moderate

difficulty.

(3) BOA. BOA requires a subquadratic number of evaluations until it finds the optimum of all

tested problems of bounded difficulty; these results are supported by theory in the next chapter.

Furthermore, the performance of BOA does not depend on the location of positions correspond-

ing to each subproblem in a proper decomposition. BOA is capable of both finding a proper

decomposition of a problem and exploiting that decomposition to solve the problem quickly,

accurately, and reliably.

69

3.6 Summary

This chapter described the Bayesian optimization algorithm (BOA), which uses Bayesian networks

to model promising solutions and sample new candidate solutions. Additionally, the chapter pro-

vided basic background of learning Bayesian networks, which is one of the core components of BOA.

Finally, the chapter tested BOA on several problems of bounded difficulty. A summary of the key

points of this chapter follows:

• Bayesian optimization algorithm (BOA) replaces crossover and mutation of GAs by the fol-

lowing two steps:

1. Learn a Bayesian network. Given the set of promising solutions after selection, learn

a Bayesian network that best fits the selected solutions.

2. Sample the learned network. Generate new points according to the distribution

encoded by the network learned in the previous step.

• BOA implementations can vary in the choice of a selection operator, methods for learning

Bayesian networks, methods for evaluating each candidate network, methods for sampling

the learned model, and methods for incorporating new candidate solutions into the parent

population.

• Learning the structure of a network can be split into (1) the problem of measuring the quality

of each candidate network and (2) the problem of searching for the best network with respect

to a given measure.

• There are two approaches to measuring the quality of each candidate network:

1. Bayesian metrics. Bayesian metrics account for the uncertainty of network structures

and their parameters by specifying prior distributions for both network structures and

parameters of each structure. The quality of a model grows with the marginal likelihood

of the model given the population of promising solutions and prior distributions encoding

inherent uncertainties.

2. Minimum description length metrics. Minimum description length metrics are

based on the assumption that the more regularities in the data a model encodes, the

70

higher lossless compression can be achieved when using the model to compress the data.

The quality of a model decreases with the number of bits required to compress the

population of promising solutions using the model.

• Unfortunately, the problem of finding the best network with respect to most Bayesian and

non-Bayesian metrics is NP-complete. The good news is that a simple greedy algorithm per-

forms well on most practical problems. The greedy algorithm iteratively performs elementary

operations on the current network that improve the quality of the network the most until

no more improvement is possible. Elementary operations usually consist of (1) adding a new

edge into the current network, (2) removing an existing edge from the current network, and

(3) reversing an edge in the current network.

• The greedy algorithm for network construction can start with an empty network, the net-

work from the previous generation, or the network generated by the polynomial maximum

branching algorithm for constructing tree models.

• To sample the learned Bayesian network using forward simulation, the variables are first

ordered so that each variable is preceded by its parents. The values of the variables in

each new solution are then generated according to the computed ordering using conditional

probabilities encoded by the network.

• The results of initial experiments indicate that BOA is capable of solving problems of bounded

difficulty in a subquadratic number of fitness evaluations. For onemax the number of eval-

uations grows as O(n lnn), and for composed trap and deceptive functions the number of

evaluations grows as O(n1.65).

• On the other hand, the performance of the simple GA and the mutation-based hill climber

dramatically deteriorates as the problem becomes more difficult. For composed traps of order

5, for instance, the number of fitness evaluations grows as O(2n) for the GA with uniform

crossover, and O(n5 lnn) for the hill climber.

71

Chapter 4

Scalability Analysis

The empirical results of the last chapter were tantalizing. Easy and hard problems were automati-

cally solved without user intervention in polynomial time. This raises an important question: How

is BOA going to perform on other problems of bounded difficulty?

The purpose of this chapter is to analyze the scalability of BOA on problems of bounded

difficulty. In particular, the chapter considers the number of evaluations of the objective function

until the optimum is found with high confidence. The total number of evaluations is computed by

(1) estimating an adequate population size that ensures reliable convergence to the optimum, (2)

approximating the number of generations until convergence, and (3) making a product of these two

quantities. Empirical results are then compared to the developed theory.

The chapter starts by arguing that the number of evaluations is a reasonable measure of compu-

tational complexity of BOA. Section 4.2 provides background of the GA population-sizing theory.

Section 4.3 focuses on the BOA population-sizing theory. Section 4.4 discusses background of GA

time-to-convergence theory, which estimates the number of generations until convergence assuming

a sufficiently large population. Section 4.5 presents the convergence model for population-wise

uniform crossover (univariate marginal distribution) on onemax and discusses how the model can

be extended to the more general case of BOA. Two bounding types of scaling the subproblems in

the problem decomposition are considered: (1) uniform scaling, and (2) exponential scaling. The

scaling in any decomposable problem of bounded difficulty is expected to lie between the two cases.

Section 4.6 puts all the pieces of the scalability puzzle together and validates the developed theory

with experiments. Finally, Section 4.8 summarizes the chapter.

72

4.1 Time Complexity and the Number of Evaluations

One of the important characteristics of black-box optimization algorithms is the number of evalu-

ations until reliable converge to the optimum. There are two primary reasons why considering the

number of evaluations makes sense. The first reason is that in complex real-world applications it

becomes expensive to evaluate each new solution; even a second for evaluating one solution usu-

ally overshadows the remaining overhead of the optimization method. The second reason is that

per-evaluation computational overhead grows usually as a low-order polynomial of the problem

size. Good scalability with respect to the number of evaluations thus implies good scalability with

respect to the more traditional measures of computation complexity.

Let us assume that in each generation the number of new candidate solutions that must be

evaluated is equal to a certain proportion of the size of the original population before selection,

Eg = cN, (4.1)

where c ∈ (0, 1) is a constant and N is the size of the population before selection. For example, if

the size of the offspring population is equal to the size of the original population before selection,

then c = 1. On the other hand, if only half of the original population is replaced by offspring, then

c = 0.5.

The number of evaluations E until convergence is then given by

E = N + EgG = N + c(N ×G), (4.2)

where G is the number of generations until convergence. Note that N , G, and E are in fact functions

of the problem size and the type of the problem, and that the focus is on the growth of E with

respect to the problem size. Since the number of generations does not decrease with the problem

size,

E = O(N ×G). (4.3)

Therefore, to compute the growth of E with respect to the problem size, it is sufficient to com-

pute the required population size and the number of generations until convergence, both expressed

73

in terms of the problem size.

The following section provides background of the GA population-sizing theory. Section 4.3

presents the BOA population-sizing model. Section 4.4 provides background of GA theory for

estimating the number of generations until convergence. Section 4.5 focuses on the number of

generations until reliable convergence in BOA. Finally, Section 4.6 combines the pieces of theory to

compute the overall number of evaluations required by BOA on decomposable problems of bounded

difficulty.

4.2 Background of GA Population-Sizing Theory

GA population-sizing theory attempts to estimate an adequate population size for ensuring reliable

convergence to the optimum. There are three important factors influencing the population sizing

in GAs (assuming that crossover combines and preserves the building blocks effectively):

1. Initial supply. The population must be large enough to ensure that there is a sufficient

supply of alternative solutions to each subproblem.

2. Decision making. The population must be large enough to ensure that decision making

between alternative solutions to each subproblem is not misled by the noise from the remaining

subproblems and that the best partial solution (the building block or BB) indeed wins.

3. Genetic drift. The population must be large enough to ensure that if the subproblems

converge in several phases, there is an adequate initial supply of alternative solutions to each

subproblem once the algorithm gets to the beginning of the subproblem’s phase.

The next section discusses population-sizing models that focus on the initial supply of building

blocks (BBs). Subsequently, population-sizing models concerned with the decision making are

reviewed briefly. Finally, models that deal with genetic drift are examined.

4.2.1 Having an Adequate Initial Supply of BBs

Recall the GA simulation for onemax presented in Section 1.3. Without making sure that there are

enough 1s in each position of the initial population, the GA could not find the optimum (regardless

74

of how well or how badly it would recombine). To ensure that the solution can be found by

combining bits and pieces of promising solutions, it is necessary that there is enough raw material

to start with. Initial-supply population-sizing models (Holland, 1975; Goldberg, Sastry, & Latoza,

2001; Goldberg, 2002) focus on the initial supply of this raw material and bound the population

size so that the initial population contains enough BBs to enable the selectorecombinative search

of GAs to juxtapose these BBs and “build” the optimum.

Let us start with some simple mathematics to motivate initial-supply models, followed by a

short review of past work on this topic. Assuming that the initial population of N binary strings

is generated at random, the expected number of copies of any partial solution of order k is

m(BBk) =
N

2k
. (4.4)

This suggests that to ensure a fixed number of copies of each BB, the population size should grow

at least exponentially with the BB size. Of course, the actual number of copies can fluctuate from

its expected value, because the initial population is generated at random (and almost anything

can happen). Nonetheless, for the purposes of this thesis, this level of understanding of the inital

supply of BBs is sufficient.

The importance of the initial supply of BBs was first recognized by Holland (1975), who com-

puted the number of BBs that receive a specified number of copies in the initial population using

Poisson distribution. Goldberg (1989b) refined Holland’s model by using binomial distribution

and applied the resulting model to population sizing. Reeves (1993) proposed an initial-supply

population-sizing model for BBs of unit size and fixed cardinality. Poli, Langdon, and O’Reilly

(1998) looked at the required number of copies of each BB to prevent its loss. Most recently, Gold-

berg, Sastry, and Latoza (2001) computed the necessary population size to ensure that every BB

gets at least one copy in the initial population using alphabets of arbitrary cardinality.

4.2.2 Deciding Well Between BBs and their Competitors

Besides having an adequate initial supply of BBs, another important factor that determines the

success of GAs is the one of deciding well between BBs and their competitors. Naturally, each BB

should get more copies in the offspring population than its competitors do. However, as it was

75

recognized by Holland (1973), the decision making in GAs is a statistical one, and the population

size must be set accordingly to ensure that good decisions are made with high probability. Holland

illustrated the statistical nature of decision making using a 2k-armed bandit model. Later, De Jong

(1975) developed equations for the 2-armed bandit and noted the importance of noise in the GA

decision making. In short, the decision-making for a particular BB is affected by noise from the

fitness contributions of the remaining partitions of the problem decomposition (the context); this

noise is often referred to as collateral noise.

The effects of collateral noise can be illustrated by looking at the GA simulation on onemax

shown in Figure 1.2. Although the last bit of 00001 is contained in the optimum and it increases

the fitness of each solution independently of its context, the fitness of 00001 is worse than that

of 10010. If 00001 and 10010 compete in a tournament, the proportion of 1s in the last position

will decrease. However, on average, the performance of solutions with 1 in the last position should

increase. Decision-making population-sizing models estimate the required size of a population to

ensure that good decisions are made; in the onemax case, good decision making should increase

the proportion of 1s in each position of the population over time.

Goldberg and Rudnick (1991) computed the variance of collateral noise using Walsh analysis and

considered the ramifications of the result for the decision making. The variance of collateral noise

formed the basis of the first practical decision-making population-sizing model (Goldberg, Deb, &

Clark, 1992). The proposed model reduced decision making to the two best partial solutions of a

subproblem—the BB and its toughest competitor. It estimated the required population size so that

each BB wins over its best competitor in the same partition; once that is ensured, it is natural to

expect the BB to win over its remaining competitors in the same partition as well. This model was

a bit pessimistic, it required each BB to win in the first generation. Assuming that the problem is

decomposable into similar subproblems of bounded order, the resulting population-sizing estimate

was computed as

N = 2c(α)2km′σ
2
bb

d2
, (4.5)

where c(α) is the square of the ordinate of a unit normal distribution where the probability equals

to α; α is the probability of failure; k is the order of the considered BB; m′ is one less than the

number m of BBs (i.e. m′ = m − 1); σ2
bb is the root mean square (RMS) fitness variance of the

76

fitness contributions in the BB’s partition; and d is the difference between the fitness contributions

of the BB and its toughest competitor.

Harik, Cantú-Paz, Goldberg, and Miller (1997, 1999) refined the above population-sizing es-

timate by eliminating the requirement for successful decision making in the first generation, and

modeling subsequent generations using gambler’s ruin model in one dimension (Feller, 1970). As-

suming perfect mixing, the bound on the population size sufficient to find a solution containing

each BB with the probability (1− α) was reduced to

N = −2k−1 ln(α)
σbb

√
πm′

d
· (4.6)

Empirical results with tightly-encoded deceptive BBs and the two-point crossover matched the

theory very well (Harik, Cantú-Paz, Goldberg, & Miller, 1997). Thus, with perfect mixing, the

required population size in GAs grows proportionally to the square root of the number of BBs in

a problem. The gambler’s ruin population-sizing model was later extended to accomodate noise in

the fitness function (Harik, Cantú-Paz, Goldberg, & Miller, 1999).

An empirical population-sizing model for onemax, truncation selection, and uniform crossover

was discussed by Mühlenbein and Schlierkamp-Voosen (1993); this model agrees with the Gambler’s

ruin model for this special case and estimates the population size as O(
√

n log n).

4.2.3 Genetic Drift

Genetic drift causes some partial solutions to be lost even if their fitness values are the same or

better than those of their competitors. This could become a problem if the contributions of the

different subproblems are scaled so that the subproblems converge in several phases, where in each

phase only some of the subproblems matter. Consequently, when the subproblem’s phase starts, the

alternative solutions corresponding to this subproblem may have already been eliminated. Much of

the following discussion on the drift population-sizing models is motivated by the works of Rudnick

(1992), Thierens, Goldberg, and Pereira (1998), Lobo, Goldberg, and Pelikan (2000), Rothlauf

(2001), and Albert (2001).

To illustrate the importance of genetic drift in sizing the populations for some problems, it is

77

Currently optimized bits

Already converged bits

Random bits (subject to drift)

Direction of the optimization

Figure 4.1: Convergence on a problem with exponentially scaled subproblems. The variables con-
verge sequentially. At any point in time, only a small subset of variables matters; other variables
have either converged already or their values do not influence the fitness enough to be affected by
selection.

helpful to consider the binary integer fitness function (Rudnick, 1992) defined as

fbin(X) =
n−1∑
i=0

2n−i−1Xi, (4.7)

where X = (X0, . . . ,Xn−1) is the input binary string of size n. The binary integer fitness decodes

the binary number and uses the decoded value to determine its fitness. For example, fbin(001) =

0× 22 + 0× 21 + 1× 20 = 1 and fbin(110) = 1× 22 + 1× 21 + 0× 20 = 6.

Similarly as in onemax (see Equation 1.1 on page 13) the optimum of the binary integer is

in the string of all ones and the function is monotonous. However, in the binary integer, the ith

bit matters more than all the remaining bits to its right. As the result, selection will always put

pressure only on one or a very small subset of bits and the GA will converge sequentially, one

bit after another, taking one or a couple of generations for each single bit. At any point in time,

some bits are already fixed, one or a couple of bits are just in the process of converging, and

the remaining bits fluctuate randomly due to the stochasticity of selection (Rudnick, 1992). The

random fluctuations of the partial solutions whose fitness contributions are too low are often called

genetic drift. See Figure 4.1 to visualize of this process.

Due to genetic drift, once the GA starts optimizing the last bit (which did not matter in

the selection process so far) its optimal value (in this case, 1) might be already gone. The drift

population-sizing models ensure that when a particular subproblem starts to matter, there are still

enough partial solutions to this subproblem to find the global optimum. There are two extreme

ways of scaling the subproblems. At one extreme, all the subproblems are scaled the same and

78

converge at the same time. At another extreme, there is one phase per variable, and the variables

converge sequentially. The problems from the first extreme are taken care of by the initial-supply

and decision-making models. The problems between the two extremes are discussed next.

It can be shown (Goldberg & Segrest, 1987; Asoh & Mühlenbein, 1994; Lobo, Goldberg, &

Pelikan, 2000) that, assuming that a proper crossover is used and that the considered subproblem

does not play a role in the selection at the time, the expected time for losing the partial solution

due to genetic drift (the drift time) is given by

tdrift = cN, (4.8)

where N is the population size, and the constant c depends on the initial proportion of the consid-

ered partial solution. Note that by enlarging the population size, any drift time can be achieved. In

other words, the time until any partial solution is eliminated due to genetic drift can be increased

arbitrarily by enlarging the population.

To find out how long the waiting must be, it is necessary to compute the number of generations

until the start of each phase. The number of phases can be upper-bounded by the size of the

problem (since in each phase at least one variable must fully converge):

nphase ≤ n. (4.9)

Let us denote the number of subproblems of bounded order that play role in the ith phase by ni,

where i ∈ {1, . . . , nphase}. Each variable must be contained in at most one phase:

∑
i

ni ≤ n. (4.10)

The number of generations required to converge in the ith phase can be bounded by (Mühlenbein

& Schlierkamp-Voosen, 1993; Thierens & Goldberg, 1994)

ti = O(
√

ni). (4.11)

79

Therefore, the number of generations until the ith phase starts is given by

Ti =
i−1∑
k=1

ti =
i−1∑
k=1

ai
√

ni, (4.12)

where ai are constants depending on the type of the problem and the selection method used. We

must now ensure that none of the partial solutions in the ith problem drifts earlier than Ti for

every phase i:

tdrift > Ti. (4.13)

Therefore, we require that for all phases i, the following equation must be satisfied

cN ≥
i−1∑
k=1

ai
√

ni. (4.14)

The right-hand side of the last equation can grow at most linearly with the size of the problem,

because
i−1∑
k=1

ai
√

ni ≤
i−1∑
k=1

aini = O(n). (4.15)

Therefore, cN ≥ dn, where c and d are constants, yielding

N = O(n). (4.16)

To summarize, the bound on the population size from the above equations can range from O(
√

n)

(when all the subproblems are uniformly scaled as in onemax) to O(n) (when each subproblem

corresponds to a special phase as in the binary integer). The population size should thus grow at

most linearly with the problem size.

The following section focuses on the population sizing in BOA.

4.3 Population Sizing in BOA

There are four factors that influence the population sizing in BOA (Pelikan, Goldberg, & Cantú-

Paz, 2000a). The first three factors were discussed in the background part of this chapter; these

factors can be adopted from the GA population-sizing theory (Holland, 1975; Goldberg, 1989b;

80

Goldberg, Deb, & Clark, 1992; Harik, Cantú-Paz, Goldberg, & Miller, 1997; Goldberg, Sastry,

& Latoza, 2001; Goldberg, 2002). However, the GA theory assumes that crossover combines and

preserves the building blocks properly; in the terminology of BOA, the probabilistic model was

assumed to encode a proper problem decomposition. In addition to the first three factors, BOA

must be capable of learning a proper, non-misleading, problem decomposition. Once this is ensured,

the results of the GA population-sizing theory considering the first three factors can be applied.

This section presents the theory for sizing the populations in BOA so that a good model is

found (Pelikan, Goldberg, & Cantú-Paz, 2000a; Pelikan, Sastry, & Goldberg, 2001). To simplify

the analysis, we require that BOA finds a good enough model in the first generation. Although the

population-sizing model derived under such an assumption is somewhat pessimistic because BOA

can still recover after missing some important dependencies in the first generation, the resulting

bound on the population size estimate fits the actual empirical results well.

4.3.1 Road Map to BOA Population-Sizing Model

The section starts by discussing the sources of statistical dependencies in the population of promis-

ing solutions. Section 4.3.3 relates collateral noise to the problem size, states the important as-

sumptions of the BOA population-sizing model, and provides basic notational conventions followed

in the remainder of the section. Section 4.3.4 discusses the problem of deciding between adding and

not adding an edge into the Bayesian network and defines the critical population size, which is the

minimum population size for finding the dependency under consideration. Section 4.3.5 computes

the probabilities of one partition of the problem decomposition after applying binary tournament

selection. The section shows that any two positions can be treated separately even if they are

contained in a bigger partition.

Section 4.3.6 computes the critical population size for the general two-bit case. Section 4.3.8

discusses the effect of using finite populations on the difference between the expected frequencies

after applying binary tournament selection and the actual ones. Section 4.3.9 compares the devel-

oped theory to the empirical results. Section 4.3.10 summarizes and discusses the results of the

BOA population-sizing theory. The chapter then continues by discussing the number of generations

until BOA convergence.

81

X p(X)
00 0.25
01 0.25
10 0.25
11 0.25

(a) Initial (random) population

X p(X)
00 0.0625
01 0.25
10 0.25
11 0.4375

(b) Population after binary tournament

Table 4.1: The proportions of the solutions on the two-bit onemax before and after binary tourna-
ment selection. The population is assumed to be infinite.

If the reader is not interested in the detailed theory, he or she may skip over most of this section

without losing track and continue with the section summary on page 106.

4.3.2 Finding a Proper Model: The Good, the Bad, and the Ugly

Consider two bit positions, X1 and X2. If the fitness contributions of X1 and X2 are independent

as in onemax, the model should not contain an edge between the two variables. On the other

hand, if the contributions of X1 and X2 do depend on each other, it might be necessary to consider

the dependency between the two variables. Not all nonlinearities must be covered; however, some

nonlinearities could lead to deception as in the trap example in chapter 1. To avoid deception,

BOA should consider as many nonlinearities as possible.

However, the construction of a model is guided by statistical dependencies and independencies

over subsets of variables, while nonlinearities that must be detected are in the fitness. To find a

model that encodes nonlinearities in the problem, it is necessary to ensure that selection “trans-

forms” nonlinearities in the fitness into statistical dependencies in the population of promising

solutions.

If the fitness contributions of X1 and X2 depend on each other, it can be expected that selection

will lead to a detectable statistical dependency between the two variables. However, contrary to

intuition, all commonly used selection methods also introduce the statistical dependencies between

the variables whose fitness contributions are independent. This happens even if the infinite pop-

ulation is used. Let us illustrate this on an example. Consider a 2-bit onemax and an infinite

population. As shown in Table 4.1(a), all the solutions 00, 01, 10, and 11 will occupy 25% of the

82

initial population. After performing binary tournament selection, the frequencies will change as

shown in Table 4.1(b). If the two positions were statistically independent, the following equation

would have to be satisfied:

p(11) = p(1∗)p(∗1),

where p(1∗) and p(∗1) denote the total probability of 1 on the first and second positions, respectively.

Substituting the probabilities from Table 4.1 yields p(11) = 0.4375 on the left-hand side of the above

equation, and p(1∗)p(∗1) = 0.68752 ≈ 0.4727 on the right-hand side. Clearly, 0.4375
= 0.4727 and

therefore the two variables are not statistically independent, even though their fitness contributions

are independent.

Therefore, there are two kinds of statistical dependencies after selection; some dependencies are

introduced by the nonlinearities in the fitness, while some dependencies are introduced by selection

only. It is important that BOA discovers those dependencies that correspond to the nonlinearities

(good dependencies), and that it ignores those dependencies that are introduced by selection only

(bad dependencies). In particular, it is desirable that the following two conditions are satisfied:

1. The statistical dependencies corresponding to the fitness nonlinearities are significantly stronger

than the statistical dependencies introduced by selection only.

2. The stronger the nonlinearity, the stronger the statistical dependency.

This section shows that both the conditions are satisfied. To make the computation tractable,

the section first assumes that the frequencies behave as if an infinite population were used, although

the focus is on the sufficient population size to discover the good dependencies and avoid the bad

ones. Next, the assumption about the accuracy of the frequencies is justified by computing the

minimal bound on the population size that ensures that with high confidence, the frequencies will

be sufficiently close to the expected ones with an infinite population.

4.3.3 Assumptions and Notation

To make the theoretical analysis tractable, we make several assumptions about the problem. First,

we assume that the fitness function is defined as the sum of the subfunctions applied to disjoint

subsets of the variables of order k and that all the subfunctions are the same. In some cases, it is

83

possible to apply the results of the theory also to the case where the subfunctions overlap; however,

in most cases the theory would have to be extended to incorporate the effects of the overlap.

A particular partition of the problem decomposition is considered. Without loss of generality,

we denote the variables in the considered partition by X = (X1, . . . ,Xk) or Y = (Y1, . . . , Yk) and

their instantiations (blocks of k bits or partial solutions) by x = (x1, . . . , xk) and y = (y1, . . . , yk).

The fitness contribution of X and Y is denoted by g(X1, . . . ,Xk) = g(X) and g(Y1, . . . , Yk) = g(Y),

respectively. We denote the total fitness of the solutions containing the block x = (x1, . . . , xk) by

F (x) (note that F (x) is a random variable) and we assume that the contributions of the remaining

variables can be modeled by a normal distribution with the variance proportional to the size of the

problem:

F (x) ∼ N(μx, σ2
N), (4.17)

where μx is the average fitness of the solutions containing x = (x1, . . . , xk), and σ2
N is the variance

of the fitness contributions of the remaining variables (collateral noise). Additionally,

σ2
N ∝ n, (4.18)

where n is the size of the problem. The above assumption can be justified by the central limit

theorem for all decomposable problems of bounded difficulty where the fitness contribution of each

subproblem is of the same magnitude and the order of the subproblems is bounded by a constant.

If the magnitude of the contributions varies from one subproblem to another, the population sizes

required for building a good model decrease, because in each generation only a subset of the

subproblems will matter.

By p(x) = p(x1, . . . , xk), we denote the probability of the partial solution x in the selected

population of promising solutions. The probability is computed as the relative frequency of the

partial solution x in the selected population. The probability of the other partial solutions is

denoted in a similar fashion. For example, p(x1, x2) denotes the probability of the solutions with

X1 = x1 and X2 = x2, p(x2) denotes the probability of the solutions with X2 = x2, and so forth.

The probability distribution of p(x) is denoted by p(X). The probabilities before selection are

denoted by pinit(x).

84

Additionally, as mentioned above, in many derivations we assume that the probabilities follow

their expected behavior in the case of an infinite population, although in practice we can expect

additional noise due to the finite size of the population. The assumption is later justified by

bounding the population size so that the frequencies are close enough to their expected values with

high confidence.

We consider only binary tournament selection (see page 11). Although the results seem to hold

with other selection methods, the theoretical analysis becomes intractable. The empirical results

for tournament selection with bigger tournaments are presented to justify this claim. The selected

population is assumed to be of the same size as the population before selection is.

External noise in the fitness function can be incorporated into the theory in a straightforward

manner, if the noise can be approximated by a zero-mean normal distribution. If the variance

of external noise does not grow faster than linearly with the size of the problem, all the above

assumptions will remain satisfied. However, if external noise grows faster than linearly with the

size of the problem, the theory would have to be modified slightly; however, all the modifications

are straightforward and are therefore omitted for the sake of simplicity.

4.3.4 Edge Additions and the Critical Population Size

Consider the decision making between the following two cases:

(1) Add an edge from X2 to X1.

(2) Don’t add the edge from X2 to X1.

To decide whether to add or not add the edge, we must compare the values of the used scoring

metric for the current network with and without the edge, and choose the better alternative. Since

both MDL and Bayesian metrics are decomposable, it is sufficient to look at the term corresponding

to the node X1.

There are two cases. Figure 4.2 illustrates both cases. In the first case (see part (a) in the

figure), X1 is isolated; in the second case (see part (b) in the figure), several edges that end in X1

already exist in the network. The first case is first analyzed in detail. Section 4.3.7 extends the

results of the analysis to the second, more general, case.

85

?

X1

X2

X1

X2

(a) Adding the first edge

Xk−1X2 X3

X1

Xk
. . . Xk−1X2 X3

X1

Xk
. . .

?

(b) Adding an additional edge

Figure 4.2: There are two cases to consider when making a decision between adding and not
adding an edge. The first case assumes that there are no other edges into the terminal node of the
considered edge, the second assumes that there are a number of such edges.

The score assigned by BIC to X1 without the edge from X2 to X1 is given by

BIC(X1) = −H(X1)N − log2 N

2
, (4.19)

where H(X1) is the entropy of X1, and N is the number of selected solutions (the size of the selected

population). After adding an edge from X2 to X1, the new score for X1 is given by

BIC(X1 ← X2) = −H(X1|X2)N − log2 N, (4.20)

where H(X1|X2) is the conditional entropy of X1 given X2. For an addition of the edge X2 → X1,

the following inequality must be satisfied:

BIC(X1 ← X2) > BIC(X1). (4.21)

By substituting the equations 4.19 and 4.20 into the last equation, we get

(H(X1)−H(X1|X2))N − log2 N

2
> 0. (4.22)

Let us denote the difference between the marginal and conditional entropies of X1 by D:

D = H(X1)−H(X1|X2). (4.23)

86

If X1 and X2 are not statistically independent, D is strictly positive. The positivity of D is later

supported by an exact calculation of D in the general case; in particular, D is shown to be positive

if X1 and X2 contribute to the fitness in some way. If X1 and X2 do not influence the fitness,

D = 0 and the model will not add any dependency between the two variables.

Since D > 0 and the linear term in Equation 4.22 grows faster than the logarithmic one,

Equation 4.22 will be satisfied for a large enough N . Intuitively, when the two variables are not

independent, for a big enough population size, the dependency should be discovered. We call the

sufficient population size for the discovery of the dependency X2 → X1 the critical population size

and denote it by Ncrit. To determine Ncrit, the following equation must be solved for N :

N − log2 N

2D
= 0. (4.24)

The above equation has two solutions but there is no closed form for either of these solutions.

The dependency is discovered for the population sizes lower than the first (lower) solution or greater

than the second (greater) one. The first solution is approximately equal to 1 + 2D ln 2. However,

since even for small problems the value of D is very small, this solution is of no interest in our case.

Ncrit is therefore defined as the larger of the two solutions of the last equation.

If the ratio 1
2D is large enough, the larger of the two solutions of the above equation follows a

power law is thus of the form α
(

1
2D

)β, where α ∼ 8.34 and β ∼ 1.05. More specifically,

Ncrit = 8.33
(

1
2D

)1.05

= 4.027 D−1.05 (4.25)

Since for an increasing problem size the magnitude of D decreases inversely proportionally to

the number of decision variables in the problem or even faster, 1
2D is going to be large and the

above approximation can be used to determine Ncrit. Figure 4.3 shows the numerical solution

and its approximation using Equation 4.25. The solutions corresponding to the two methods are

practically indistinguishable.

In order to apply our results to the scale-up behavior of BOA with BIC metric, we are interested

in the growth of Ncrit with respect to the size of the problem (the number of decision variables).

Using the approximation given in Equation 4.25, it can be shown that the growth of Ncrit is

87

10
5

10
6

10
7

10
8

10
9

10
6

10
7

10
8

10
9

10
10

C
rit

ic
al

 p
op

ul
at

io
n

si
ze

, N
cr

it

1/(2D)

Numerical solution
Approximation

Figure 4.3: Critical population size with respect to the ratio 1
2D for BIC metric.

proportional to the growth of 1
2D and therefore to determine the growth of Ncrit with respect to the

size of the problem, it is sufficient to compute the growth of 1
2D with respect to the same parameter.

The following section starts by computing the probabilities of the partial solutions after applying

binary tournament selection. These probabilities are then used to determine the growth of D in two

cases: (1) the fitness contributions of X1 and X2 are correlated, and (2) the fitness contributions

of X1 and X2 are independent. The two cases are distinguished by a parametrization of the fitness

contribution of X1 and X2. The growth of D is then substituted to Equation 4.25 to determine

the growth of Ncrit.

4.3.5 Block Probabilities After Binary Tournament

The initial population is generated at random with the uniform distribution and therefore the

probability of any instantiation of the variables in the considered block of k binary variables is

given by

pinit(x) =
1
2k
·, (4.26)

where x = (x1, . . . , xk) denotes the bits in the considered block.

binary tournament selection selects two parents at random and chooses the one with the better

fitness. Denote the probability of a tournament between the competing blocks x and y in a particular

order by ptourn (note that x and y correspond to the same partition in the problem). Using

88

Equation 4.26,

ptourn = pinit(X)pinit(Y) =
1

22k
· (4.27)

The ordering of x and y in the tournament does not affect the result of the tournament and,

therefore, the probability of x after binary tournament selection is given by

p(x) =
∑

y1,...,yk

2ptournp(F (x) > F (y)), (4.28)

where F (x) and F (y) denote the fitness distribution of the blocks x and y, respectively (see Equa-

tion 4.17); and p(F (x) > F (y)) denotes the probability that the solution with the block x wins the

tournament over the solution with the block y. The probability of x winning the tournament over

y can be rewritten as

p(F (x) > F (y)) = p(F (x)− F (y) > 0). (4.29)

Since both F (x) and F (y) are normally distributed (see Equation 4.17), F (x) − F (y) follows the

normal distribution with the mean equal to the difference of the individual means of F (x) and F (y),

and the variance equal to the sum of the variances of the two distributions. The difference of the

mean fitness of F (x) and F (y) is equal to the difference of their contributions to the overall fitness

denoted by g(x) and g(y), because the F (x) and F (y) are not correlated (due to the assumptions)

and, consequently, the contributions of the remaining bits cancel out. Thus,

F (x)− F (y) ∼ N(g(x) − g(y), 2σ2
N). (4.30)

That yields

p(F (x) > F (y)) = Φ
(

g(x)− g(y)√
2σN

)
, (4.31)

where Φ(x) denotes the cumulative probability density function of the zero-mean normal distri-

bution with the standard deviation of 1. The resulting probability of x after binary tournament

selection is thus given by

p(x) =
∑

y

1
22k−1

Φ
(

g(x) − g(y)√
2σN

)
. (4.32)

The ratio of the fitness differences to the deviation of collateral noise decreases with the problem

89

size and is usually a very small number for moderate–to–large problems. Therefore, a linear approx-

imation of the cumulative density function in the above equation can be used, where Φ(x) = 1
2+ x√

2π
,

yielding

p(x) =
∑

y1,...,yk

1
22k−1

(
1
2

+
g(x) − g(y)

2
√

πσN

)
. (4.33)

In most cases we are interested only in the marginal probabilities of the instances x1 and x2 of

the first two variables. These can be computed by marginalization:

p(x1, x2) =
∑

x3,...,xk

p(x)

=
∑

x3,...,xk

∑
y1,...,yk

1
22k−1

(
1
2

+
g(x) − g(y)

2
√

πσN

)

=
1

22k−1

(
2k

∑
x3,...,xk

g(x)
2
√

πσN
+ 2k−2

∑
y1,...,yk

(
1
2
− F (y)

2
√

πσN

))

=
1
4

(
1 +

ḡ(x1, x2)− ḡ√
πσN

)
,

(4.34)

where ḡ(x1, x2) denotes the average fitness contribution of the partition X with X1 = x1 and

X2 = x2, and ḡ denotes the average block fitness contribution of the partition X; that is,

ḡ(x1, x2) =
1

2k−2

∑
x3,...,xk

g(x), (4.35)

and

ḡ =
1
2k

∑
x1,...,xk

g(x). (4.36)

The pairwise frequencies therefore depend only on the average block fitnesses of the correspond-

ing two bits. The dynamics of the two bits in a partition of order k can be accurately approximated

by a special case of a two-bit partition with the fitness defined according to the average building-

block fitnesses ḡ(x1, x2). This property simplifies the derivations and allows the analysis of pairwise

statistical dependencies independently of the order of the partition in which the two variables are

located.

The above approximations of the pairwise probabilities are verified in Figure 4.4. The values

computed according to the above approximations are compared to the actual values computed

90

50 100 150 200 250 300 350 400 450 500

0.15

0.2

0.25

0.3

0.35

Fitness variance

P
ro

ba
bi

lit
y

p(X
1
=0,X

2
=0): Simulation

p(X
1
=0,X

2
=0): Theory

p(X
1
=0,X

2
=1): Simulation

p(X
1
=0,X

2
=1): Theory

p(X
1
=1,X

2
=0): Simulation

p(X
1
=1,X

2
=0): Theory

p(X
1
=1,X

2
=1): Simulation

p(X
1
=1,X

2
=1): Theory

(a) Onemax.

50 100 150 200 250 300 350 400 450

0.23

0.24

0.25

0.26

0.27

0.28

0.29

Fitness variance

P
ro

ba
bi

lit
y

p(X
1
=0,X

2
=0): Simulation

p(X
1
=0,X

2
=0): Theory

p(X
1
=0,X

2
=1): Simulation

p(X
1
=0,X

2
=1): Theory

p(X
1
=1,X

2
=0): Simulation

p(X
1
=1,X

2
=0): Theory

p(X
1
=1,X

2
=1): Simulation

p(X
1
=1,X

2
=1): Theory

(b) Trap of order 5.

Figure 4.4: Pairwise frequencies versus their approximation with respect to noise.

by the simulation of binary tournament selection using infinite populations on onemax and trap

functions. The simulation directly encodes all the assumptions and computes the probabilities

without any approximations. In both cases, the results of the simulation and the approximations

are practically indistinguishable.

4.3.6 General Two-Bit Case

In the general two-bit case, the fitness of the two variables X1 and X2 can be written as

ḡ(X1,X2) = a0 + a1X1 + a2X2 + a12X1X2, (4.37)

where a0, a1, a2, and a12 are constants. In the above equation, if the contribution of X1 is

independent of X2, then a12 = 0. On the other hand, if a12
= 0, the contributions of the variables

X1 and X2 are correlated.

The probability of any instantiation of the two variables X1 and X2 after binary tournament

91

selection can be computed using Equation 4.34, yielding

p(X1,X2) =
1
4

(
1 +

ḡ(X1,X2)− ḡ√
πσN

)

=
1
4

(
1 +

a0 + a1X1 + a2X2 + a12X1X2 − 4a0+2a1+2a2+a12
4√

πσN

)

=
1
4

(
1 +

a1(4X1 − 2) + a2(4X2 − 2) + a12(4X1X2 − 1)
4
√

πσN

)
(4.38)

By summing the above equations over X1 and X2, respectively, we get

p(X1) =
1
2

(
1 +

a1(4X1 − 2) + a12(2X1 − 1)
4
√

πσN

)

p(X2) =
1
2

(
1 +

a2(4X2 − 2) + a12(2X2 − 1)
4
√

πσN

) (4.39)

The above equations can be used to compute the frequencies of any instantiation of X1 and X2,

yielding the following set of equations:

p(X1 = 0,X2 = 0) =
1
4

(
1 +
−2a1 − 2a2 − a12

4
√

πσN

)
=

1
4
(1 + χ00)

p(X1 = 0,X2 = 1) =
1
4

(
1 +
−2a1 + 2a2 − a12

4
√

πσN

)
=

1
4
(1 + χ01)

p(X1 = 1,X2 = 0) =
1
4

(
1 +

2a1 − 2a2 − a12

4
√

πσN

)
=

1
4
(1 + χ10)

p(X1 = 1,X2 = 1) =
1
4

(
1 +

2a1 + 2a2 + 3a12

4
√

πσN

)
=

1
4
(1 + χ11)

(4.40)

In the last set of equations, the parameters χij are defined to be equal to the terms they replace.

Additionally, the probabilities of the instantiations of X1 and X2 can be computed as follows:

p(X1 = 0) =
1
2

(
1 +
−2a1 − a12

4
√

πσ2
N

)
=

1
2
(1− χ1)

p(X1 = 1) =
1
2

(
1 +

2a1 + a12

4
√

πσ2
N

)
=

1
2
(1 + χ1)

p(X2 = 0) =
1
2

(
1 +
−2a2 − a12

4
√

πσ2
N

)
=

1
2
(1− χ2)

p(X2 = 1) =
1
2

(
1 +

2a2 + a12

4
√

πσ2
N

)
=

1
2
(1 + χ2)

(4.41)

Again, the parameters χi are defined to be equal to the terms they replace.

92

Next, we compute the order of the growth of D in two separate cases. The first case considers

two nonlinearly interacting variables where a12 > 0. The second case considers two variables whose

contributions are independent and thus a12 = 0. In both the cases, the marginal entropies H(X1),

H(X2), and H(X1,X2) are first computed. These are then used to compute D, which can be

expressed in terms of the marginal entropies as

D = H(X1)−H(X1|X2) = H(X1) + H(X2)−H(X1,X2). (4.42)

Dependent Case: a12 > 0

First, let us compute an approximation of the entropy of X1 defined as

H(X1) = −
∑
x1

p(x1) log2 p(x1). (4.43)

Using the set of equations 4.41, the entropy of X1 can be computed as

H(X1) = −1
2
(1− χ1) log2

1
2
(1− χ1)− 1

2
(1 + χ1) log2

1
2
(1 + χ1)

= −1
2
(
log2(1− χ2

1) + χ1(log2(1 + χ1)− log2(1− χ1))
)

+ 1
(4.44)

Since χ1 is very small for moderate–to–large sized problems (it approaches zero as σN approaches

infinity), we can use a linear approximation of the logarithm near 1. In particular,

log2(1− χ2
1) ≈ −

χ2
1

ln 2
,

χ1 log2(1 + χ1) ≈ χ2
1

ln 2
,

χ1 log2(1− χ1) ≈ − χ2
1

ln 2
·

(4.45)

Thus,

H(X1) = − χ2
1

2 ln 2
+ 1

= −4a2
1 + 4a1a12 + a2

12

32πσ2
N ln 2

+ 1.

(4.46)

93

H(X2) can be computed analogously to H(X1), yielding

H(X2) = −4a2
2 + 4a2a12 + a2

12

32πσ2
N ln 2

+ 1.

The joint entropy H(X1,X2) is given by

H(X1,X2) = −
∑
x1,x2

p(x1, x2) log2 p(x1, x2) = −(A00 + A01 + A10 + A11),

where

Aij = p(X1 = i,X2 = j) log2 p(X1 = i,X2 = j). (4.47)

The terms Aij can be approximated as follows:

Aij =
1
4

(
(1 + χij) log2

1
4
(1 + χij)

)

=
1
4

(log2(1 + χij) + χij log2(1 + χij)− 2(1 + χij))
(4.48)

Since χij is very small, the last equation can be simplified using the following approximations:

log2(1 + χij) ≈
2χij − χ2

ij

2 ln 2
,

χij log2(1 + χij) ≈
χ2

ij

ln 2
·

(4.49)

Thus,

Aij =
1
4

(
2χij + χ2

ij

2 ln 2
− 2(1 + χij)

)
· (4.50)

By substituting the approximations of Aij and the equations for χij, we get

H(X1,X2) = −1
8

(
16a2

1 + 16a2
2 + 12a2

12 + 16a1a12 + 16a2a12

16πσ2
N ln 2

)
+ 2 (4.51)

Thus, the difference D between the marginal and conditional entropies can be approximated by

D =
a2

12

32πσ2
N ln 2

· (4.52)

94

Therefore, if the fitness contributions of X1 and X2 are not independent, then D grows inversely

proportionally to the variance of collateral noise.

By substituting Equation 4.52 into Equation 4.25, we can infer that

Ncrit = O(σ2.1
N). (4.53)

Using the assumption that σ2
N ∝ n where n is the number of variables in the problem, we can imply

that

Ncrit = O(n1.05). (4.54)

In other words, the critical population size for discovering a dependency between the two variables

that are nonlinearly correlated grows approximately linearly with the size of the problem.

Independent Case: a12 = 0

Note that in this case, a12 = 0. Therefore,

χ1 =
a1

2
√

πσN
, χ2 =

a2

2
√

πσN
. (4.55)

We can now write χ2 in terms of χ1 as

χ2 =
a2

a1
χ1 = bχ1, (4.56)

where b = a2/a1. The entropy of Xi (here we’re interested in X1 and X2 only) can be written as

H(Xi) = −1
2

(
(1 + χi) log2

(
1 + χi

2

)
+ (1− χi) log2

(
1− χi

2

))

= −1
2

((1 + χi) log2 (1 + χi) + (1− χi) log2 (1− χi)− 2)

= −1
2

(
log2 ((1 + χi)(1− χi)) + χi log2

(
1 + χi

1− χi

)
− 2
)

. (4.57)

95

Since χi is very small, the logarithms in the last equation can be approximated as

log2 ((1 + χi)(1 − χi)) ≈ −2χ2
i + χ4

i

2 ln 2
, (4.58)

log2

(
1 + χi

1− χi

)
≈ 6χi + 2χ3

i

3 ln 2
. (4.59)

Using the above approximations, the entropy H(Xi) is given by

H(Xi) = −1
2

(
6χ2

i + χ4
i

6 ln 2
− 2
)

. (4.60)

Thus, the entropies H(X1) and H(X2) are given by

H(X1) = −6χ2
1 + χ4

1

12 ln 2
+ 1. (4.61)

H(X2) = −6χ2
2 + χ4

2

12 ln 2
+ 1,

= −6b2χ2
1 + b4χ4

1

12 ln 2
+ 1. (4.62)

The only other term remaining to compute the entropy difference D is the joint entropy, H(X1,X2),

which is given by

H(X1,X2) = − (A00 + A01 + A10 + A11) ,

where

χ00 = −(1 + b)χ1,

χ01 = −(1− b)χ1,

χ10 = (1− b)χ1,

χ11 = (1 + b)χ1,

(4.64)

and

Aij =
1
4

(
(1 + χij) log2

(
1 + χij

4

))

=
1
4

(log2 (1 + χij) + χij log2 (1 + χij)− 2 (1 + χij)) . (4.65)

96

From the above equation, we get

A00 =
1
4

(log2 (1− (1 + b)χ1)− (1 + b)χ1 log2 (1− (1 + b)χ1)− 2 (1− (1 + b)χ1)) ,

A01 =
1
4

(log2 (1− (1− b)χ1)− (1− b)χ1 log2 (1− (1− b)χ1)− 2 (1− (1− b)χ1)) ,

A10 =
1
4

(log2 (1 + (1− b)χ1) + (1− b)χ1 log2 (1 + (1− b)χ1)− 2 (1 + (1− b)χ1)) ,

A11 =
1
4

(log2 (1 + (1 + b)χ1) + (1 + b)χ1 log2 (1 + (1 + b)χ1)− 2 (1 + (1 + b)χ1)) .

Summing the above equations for Aij gives us H(X1,X2):

H(X1,X2) = −1
4

(
log2

(
(1− (1 + b)2χ2

1)(1 − (1− b)2χ2
1)
)

+ (1 + b)χ1 log2

(
1 + (1 + b)χ1

1− (1 + b)χ1

)

+(1− b)χ1 log2

(
1 + (1− b)χ1

1− (1− b)χ1

)
− 8
)

. (4.66)

Using the approximations from equations 4.58, and 4.59,

H(X1,X2) = − 1
4 ln 2

(
(1 + b)2χ2

1 +
1
6
(1 + b)4χ4

1 + (1− b)2χ2
1 +

1
6
(1− b)4χ4

1

)
+ 2,

= − 1
4 ln 2

((
(1 + b)2 + (1− b)2

)
χ2

1 +
1
6
(
(1 + b)4 + (1− b)4

)
χ4

1

)
+ 2,

= − 1
2 ln 2

(
1 + b2

)
χ2 − 1

12 ln 2
(
1 + 6b2 + b4

)
χ4

1 + 2. (4.67)

The entropy difference D can be computed by substituting equations 4.61, 4.62, and 4.67 into

Equation 4.42:

D =
1

2 ln 2
(
1 + b2

)
χ2 +

1
12 ln 2

(
1 + 6b2 + b4

)
χ4 − 1

2 ln 2
(
1 + b2

)
χ2 − 1

12 ln 2
(
1 + b4

)
χ4,

=
b2

2 ln 2
χ4

1. (4.68)

Recall that χ1 = a1

2
√

πσN
, and b = a2/a1. Therefore, the above equation can be written in terms of

the variance of collateral noise σ2
N as

D =
1

32 ln 2

(a1a2

π

)2
σ−4

N . (4.69)

97

By substituting Equation 4.69 into Equation 4.25, we can imply that if a12 = 0, then

Ncrit = O(σ4.2
N), (4.70)

which yields

Ncrit = O(n2.1). (4.71)

In other words, the population size to discover the dependency between the two variables that

are independent with respect to the fitness function grows approximately quadratically with the

problem size.

The above theory assumes that X1 has no parents before the decision is made on whether the

edge X2 → X1 should be added into the network (see Figure 4.2(a)). The following section discusses

an extension of the theory to the general case where X1 already has a number of parents before

the decision regarding the edge X2 → X1 is made (see Figure 4.2(b)). Subsequently, the section

justifies the assumption that the frequencies follow their expected behavior by incorporating the

effects of a finite population sizing into the model.

4.3.7 General Case: Multiple Parents of X1 Exist

Above we computed the required population size for the addition of the first edge into X1. How

does the situation change if some edges that end in X1 are already present in the current model?

This section indicates that even in that case, the overall growth of the population size does not

change much, although the population size must grow exponentially with the order of the considered

dependencies.

The condition for adding the edge X2 → X1 into the network that already contains the edges

X3 → X1 to Xk → X1 is given by

BIC(X1|X2, . . . ,Xk) > BIC(X1|X3, . . . Xk). (4.72)

Using the definition of BIC, the last equation can be rewritten as

−H(X1|X2, . . . ,Xk)N − 2k−2 log2 N > −H(X1|X3, . . . ,Xk)− 2k−3 log2 N. (4.73)

98

Denoting D = H(X1|X3 . . . Xk)−H(X1|X2 . . . Xk) yields

N − log2 N

23−kD
> 0. (4.74)

Analogously to the case of the first-edge addition, the critical population size is the larger of the

two solutions of the above equation and the growth of D determines the growth of the critical

population size.

To determine the growth of D, let us first discuss the form of the nonlinearities that should be

discovered in this case. If the contribution of X1 does not depend on X2 given the values of X3 to

Xk, then the edge X2 → X1 is not required, because there is no additional nonlinearity that must

be covered in the model. However, if there is some combination of values of X3 to Xk for which

the contributions of X1 and X2 are correlated, the edge X2 → X1 should be added to reflect the

nonlinearity.

The discussion in the above paragraph suggests that the nonlinearities that are conditioned

on the particular values of X3 to Xk are important to cover. In that case, the growth of D can

be approximated by partitioning the population according to the instantiations of X3 to Xk, and

looking at each subpopulation separately. Note that the size of each partition of the population is

approximately N/2k−2, because the probabilities of the blocks of k− 2 bits get closer to each other

asymptotically. Figure 4.5 shows an example partitioning of the population according to the first

3 bits.

Using the subpopulations of the partitioning according to (X3, . . . ,Xk), the overall D can be

computed as the weighted sum of D’s for each subpopulation, because

H(X1|X3, . . . ,Xk) =
∑

x3,...,xk

p(x3, . . . , xk)Hx3,...,xk
(X1), (4.75)

and

H(X1|X2,X3, . . . ,Xk) =
∑

x3,...,xk

p(x3, . . . , xk)Hx3,...,xk
(X1|X2), (4.76)

where Hx3,...,xk
(X) denotes the entropy of X in the partition of (x3, . . . , xk). Consequently, if the

fitness contributions of X1 and X2 are correlated in at least one partition, the dominant term in

99

000010
000110
001011
001101
010111
010101

111010
111100

110100
110101

000010
000110

001011
001101

010111
010101

111010
111100

110100
110101

011110
011010

100011
100101

101111
101100

101111
101100

001

010

000

111

011
011110
011010

100

101

110

100101
100011

Figure 4.5: Partitioning the population according to the first three bits. For each configuration of
the first three bits, a new population is created that consists of all the individuals that contain that
configuration.

D will be the one coming from that partition, and the dependency will be found if the size of

that partition grows as O(n1.05). Since the size of each partition is approximately N/2k−2, the

overall growth of the population size can be bounded by O(2k−2n1.05). If the contributions of X1

and X2 are correlated in more than one partition, the population-sizing bound can be decreased

accordingly. On the other hand, if the contributions of X1 and X2 are independent in every context

of X3 to Xk, the population size to discover this unnecessary dependency X2 → X1 should grow

as O(2k−2n2.1).

Therefore, the theory for the case of adding the first edge that ends in X1 can be extended to

the general case in a straightforward manner, yielding the overall bound on the population size of

Ncrit = O(2kn1.05), (4.77)

where k is the maximum order of the subproblems in the problem decomposition. The above result

has two important implications:

(1) Sufficient population size. The sufficient population size for discovering the nonlinearities

in the problem and encoding them in the learned Bayesian network grows approximately with

O(2kn1.05). Assuming the fixed order of decomposition, the growth is O(n1.05).

100

(2) Favored nonlinearities. The magnitude of the nonlinearities affects the population sizing.

The higher the magnitude of the nonlinearities, the smaller the population size. Assuming

a particular population size, only the strongest nonlinearities can be covered, because the

population size grows exponentially with the order of the covered dependencies.

Both the dependent case and the independent one assume that the frequencies after selection are

equal to their expected values. The following section analyzes the effects of using finite populations

on the accuracy of the actual frequencies and incorporates the results of the analysis into the

developed model.

4.3.8 Getting the Frequencies Right

The population-sizing model presented above assumes that the frequencies after binary tournament

selection follow their expected behavior. However, in practice we can only use finite populations and

the model should also consider the effects of the finite population sizing on the actual, observed,

frequencies and, consequently, on the model building in BOA. The purpose of this section is to

analyze the effects of the finite population sizing and apply the results of the analysis to the

presented population-sizing model. In particular, a lower bound on the population size is computed

that ensures that the actual frequencies of each block of k bits are close enough to their expected

values with high confidence, where “close enough” will be defined later.

The bound is computed in two steps; the first step assumes that the probability of x winning a

random tournament is equal to its expected value, the second step describes how the assumptions

of the first step can be satisfied.

Assume that the probability of x being a winner of one tournament is equal to its expected

probability p(x) after selection. Let us denote the actual probability (relative frequency) of x in the

selected set of solutions after performing m tournaments by pm(X). Note that after m tournaments

there are m solutions selected (m is the size of the selected population) and, since the tournaments

are stochastic, pm(X) is a random variable.

The distribution of pm(X) is binomial, because pm(X) is equal the number of successes in m

independent trials divided by the number of trials, each trial with the probability of success equal

101

0

0.1

0.2

0.3

0.4

α/2 α/2

−ε ε p(X)

Figure 4.6: To ensure that pm(X) is within ε of its mean, the areas under the tails that start ε-away
from the mean must sum to α. The property can be satisfied for large enough m.

to p(x). The mean of pm(x) is p(x) and the variance of pm(x) is p(x)(1 − p(x))/m:

pm(x) ∼ Bin

(
p(x),

p(x) (1− p(x))
m

)
. (4.78)

For moderate values of m the binomial distribution can be approximated by the normal distribution,

yielding

pm(X) ∼ N

(
p(X),

p(X) (1− p(X))
m

)
. (4.79)

With confidence α the actual frequency pm(X) is within ε from its expected value p(X), if

Φ

(
− ε

√
m√

p(X)(1 − p(X))

)
≤ α

2
, (4.80)

where Φ is the cumulative density of the unit normal distribution (see Figure 4.6). For m, we get

m ≥
(

Φ−1
(

α
2

)√
p(X)(1 − p(X))

ε

)2

, (4.81)

where Φ−1 is the inverse cumulative density of the unit normal distribution. The number of

tournaments must therefore grow inversely proportionally with the square of ε.

How should we set the value of ε for the population sizing in BOA? Let us first get back to

102

the block probabilities and their dynamics with the problem size. The frequencies of any two-bit

partition approach 0.25 inversely proportionally to the standard deviation σN of collateral noise.

It would be therefore reasonable to set the error ε to decrease at the same rate so that the same

relative accuracy could be achieved for the entire spectrum of problem sizes. For instance, the

distance of the frequencies to their asymptotic value could deviate by at most 1% independently

of the size of the problem. In that case, the actual population size could be bounded by the two

extreme cases at an arbitrary level of confidence.

The frequencies for bigger partitions behave similarly, but they are scaled down by an additional

factor of 2k−2 where k is the order of the considered partition (see Equation 4.32). So the accuracy

of the frequencies should also increase proportionally to 2k. Therefore, it is reasonable to require

that

ε ∝ 1
2kσN

, (4.82)

where k is the size of the building blocks we must consider to find the optimum. Using the

assumption that σ2
N ∝ n (see Equation 4.18), we get

ε ∝ 1
2k
√

n
, (4.83)

where n is the size of the problem. Substituting the last equation into Equation 4.81 yields

m = O(2kn). (4.84)

Above we assumed that the expected probability of x winning a random tournament was equal

to its expected value. How can this assumption be justified? There are two approaches. The

first approach is to look at the moments of the fitness distribution in the initial population and

require that the actual observed moments are close to their expected values; this approach was

studied in Pelikan, Goldberg, and Cantú-Paz (2000a). However, it is much simpler to use the basic

properties of tournament selection to simplify the computation; this approach is discussed next.

Note that if the candidate solutions participating in each tournament were generated at random,

the actual probability of x winning a random tournament would indeed be equal to its expected

value. The problem is that some solutions must be reused to perform N tournaments of size 2 using

103

the population of size N . To eliminate this problem, the initial population can be made twice as

large as the required size of the selected population,

N ≥ 2m, (4.85)

where m is the lower bound on the size of the selected population.

Assuming that N ≥ 2m, any set of m solutions can be selected with confidence α and error at

most ε. Of course, we need to select N solutions. Then, two sets of size m must be selected. After

selecting the two sets, the error does not change (because the probabilities are averaged over the

two sets), but the confidence of the model changes to (2α − α2). Therefore, to achieve a specified

confidence level β, the alpha must first be determined such that

2α− α2 ≤ β (4.86)

In any case, the size of the population increases at most by a factor equal to the size of the

tournaments and a constant factor related to the confidence (for a fixed confidence level). Since

size of the tournaments is fixed, the bound on the population size remains of the following form:

N = O(2kn). (4.87)

Therefore, for a constant bound k on the order of the subproblems, the population size to ensure

that the frequencies retain the same relative error with arbitrary confidence grows linearly with

the problem size. Since the growth of the population sizes in both the dependent case and the

independent one was at least linear as well, the population-sizing model for the BIC metric is

applicable to the case of finite populations.

The following section presents empirical results that verify the model and the approximations

made in its derivation.

104

4.3.9 Critical Population Size: Empirical Results

Figure 4.7(a) shows the critical population size for onemax fitness function defined in Equation 1.1

on page 13. Both the simulation for infinite populations (based on the exact theoretical model

for the frequencies using an infinite population) as well as the final approximate result are shown.

We can see that the match between the theory and the infinite-population simulation is very

good and that the critical population size for discovering a dependency between the variables

whose fitness contributions are independent increases approximately quadratically with the fitness

variance, which is proportional to the size of the problem.

Figure 4.7(b) shows the critical population size for the trap function of order 5 compared to

the empirical results for the simulation with finite and infinite populations. The correlated bits

are both selected from one of the trap subfunctions, while the independent bits are selected from

two different subfunctions. The infinite-population simulation was again performed according to

the assumptions stated in Section 4.3.3. The simulation for a finite population was performed

by simulating the actual binary tournament selection on a finite population and increasing the

population size until the probability of discovering the dependency was more than 95% in 100

independent runs. The exact theoretical results and the approximations match very well. We can

also see that the use of a finite population introduces additional noise that increases the population-

sizing requirements for a reliable detection of the correct dependencies, but that the growth of the

appropriate population size is still approximately linear.

The results in Figure 4.7(b) also indicate that there is a large range of population sizes that

result in a reliable discovery of nonlinear dependencies but still do not introduce unnecessary

dependencies between the variables whose fitness contributions are correlated. Moreover, the range

grows with the problem size.

Our theoretical analysis considered only the binary tournament selection. Figure 4.8(a) indicates

that the range of population sizes leading to the discovery of good dependencies but ensuring that

the algorithm is not misled by the bad dependencies grows with the selection pressure. The bad

news is that the growth of the required population sizes grows slightly faster with an increased

selection pressure. For the tournament size of s = 2, the actual growth of the population size is

approximately O(n1.035). For the tournament size of s = 16, the growth increases to O(n1.242).

105

10
0

10
1

10
2

10
3

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Fitness variance

C
rit

ic
al

 p
op

ul
at

io
n

si
ze

, N
cr

it

Numerical simulation
Theory

(a) Onemax.

50 100 200 800

10
5

10
6

10
7

10
8

10
9

10
10

Fitness variance

C
rit

ic
al

 p
op

ul
at

io
n

si
ze

, N
cr

it

Numerical simulation
Experiment
Theory

(b) Trap of order 5.

Figure 4.7: Critical population size for onemax and the composed trap of order 5 for BIC metric.

On the other hand, the order of the growth of the population size required to discover the bad

dependencies decreases from 1.974 for s = 2 to 1.572 for s = 16. Nonetheless, as mentioned above,

the range of adequate population sizes still increases with the selection pressure.

Figure 4.8(b) shows that increasing the tournament size up to s = 16 decreases the critical

population size even for the case of a finite population. However, for high selection pressures, the

positive effects of increasing the selection pressure can be expected to decrease and actually harm

the performance of the algorithm in practice due to the premature convergence.

We observed similar results regarding the discovery of dependencies of higher order for both

the onemax and trap function.

4.3.10 Summary of Population Sizing in BOA

This section summarizes the results of the aforementioned population-sizing models for GAs and

BOA.

The requirements on the population size in BOA due to the four factors of the BOA population

sizing (see Section 4.3) are listed in Table 4.2. For uniformly scaled subproblems and a bounded size

of the subproblems, the population-sizing requirements for the BIC metric to distinguish between

106

25 50 100 200 400 800
10

3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Fitness variance

C
rit

ic
al

 p
op

ul
at

io
n

si
ze

, N
cr

it

s = 2: Correlated
s = 2: Independent
s = 4: Correlated
s = 4: Independent
s = 8: Correlated
s = 8: Independent

(a) Simulation with infinite population.

25 50 100
10

3

10
4

10
5

10
6

Fitness variance

C
rit

ic
al

 p
op

ul
at

io
n

si
ze

, N
cr

it

s = 2
s = 4
s = 8
s = 16

(b) Experiment with finite population.

Figure 4.8: The effects of increasing the selection pressure on the critical population size. As the
selection pressure increases, the critical population size decreases. The reason for this behavior is
that increasing the selection pressure results in increasing the effect of each nonlinearity on the
frequencies after selection.

the good and the bad dependencies, are dominant. The population size must grow as

Nuni = O(n1.05). (4.88)

For exponentially scaled problems, the model building is easy because the entire population is

used to determine the model over only a small subset of the variables that are being optimized at

the time. The effects of genetic drift become the dominant factor, yielding

Nexp = O(n). (4.89)

The following section provides background of GA theory for estimating the number of gen-

erations until convergence. Section 4.5 relates the GA time-to-convergence theory to BOA. Sub-

sequently, Section 4.6 combines the BOA population-sizing theory with the estimated number of

generations until convergence to compute the total number of evaluations.

107

Factor Population size
Initial supply O(2k)
Decision making O(2k√n)
Genetic drift O(

√
n) to O(n)

Model building O(2kn1.05) for putting in the right edges, or
O(2kn) for getting the frequencies right.

Table 4.2: An overview of the factors influencing the population sizing in BOA and the correspond-
ing bounds. The first three factors are adopted from GA population sizing theory. The last factor
is introduced by the need for building a proper model in BOA.

4.4 Background of GA Time-to-Convergence Theory

Once we have an adequate population size to find a solution of a specified quality, another important

question is how many generations it will take the algorithm to converge. As discussed above, it is

important to distinguish between the problems with uniform and exponential scaling. The number

of generations until convergence in the exponential case was discussed above in context of the drift

population-sizing model and the interested reader should refer to the work cited in the previous

section. This section focuses on the uniformly scaled subproblems.

Mühlenbein and Schlierkamp-Voosen (1993) estimated the number of generations until the

convergence on onemax, assuming an infinite population size and perfect mixing by population-

wise uniform crossover, as follows:

tconv =
(π

2
− arcsin (2p− 1)

) √n

I
, (4.90)

where p is the initial proportion of ones on each position; n is the problem size; and I is the

selection intensity. The selection intensity is defined as the difference between the mean fitness

of the population before selection and the population after selection normalized by the standard

deviation of the fitness values in the population before selection:

I(t) =
f(t + 1)− f(t)

σ(t)
, (4.91)

where f(t + 1) is the average fitness of the population in generation t + 1; f(t) is the average

fitness in generation t; and σ(t) is the standard deviation of the fitness values in generation t. For

many commonly used selection schemes—such as the tournament, truncation, ranking, and (λ, μ)

108

selection—the selection intensity is a constant (Mühlenbein & Schlierkamp-Voosen, 1993).

The above result suggests that with a large enough population, the number of generations until

convergence is proportional to the square root of the problem size and inversely proportional to

the selection intensity. The convergence model was later rederived and extended by Miller and

Goldberg (1996a) to take into account additional normally distributed noise in the fitness function.

The above two convergence models assume that the population is large enough for the conver-

gence to follow its expected behavior with an infinite population size. In practice, the population

size must usually be sufficiently large for the convergence to the optimum; in that case the GA

dynamics is indeed close to the case with infinite populations. However, the dynamics changes

if the populations are much smaller, which is often the case in parallel GA implementations that

distribute the population on several processors and evolve each subpopulation in isolation. Ceroni,

Pelikan, and Goldberg (2001) incorporated the effects of small populations on the overall number

of generations until convergence. The primary use of the convergence model of Ceroni et al. (2001)

is in maximizing the speed-up of parallel GAs.

The following section considers the number of generations until convergence in BOA.

4.5 Time to Convergence in BOA

The last piece we must collect to complete the puzzle of BOA scalability is the time to convergence.

The following two sections compute the number of generations until BOA convergence in two

extreme cases: (1) uniformly scaled subproblems, and (2) exponentially scaled subproblems. In the

first case, the fitness contributions of all the subproblems of the decomposition are scaled the same

and all the partitions converge in parallel. In the second case, the subproblems can be ordered

so that the fitness contributions of any subproblem overshadow the contributions of the remaining

subproblems in the ordering; in this case, the partitions corresponding to the different subproblems

converge sequentially, one partition after another, in a domino-like fashion.

4.5.1 Uniform Scaling

The number of generations until the convergence of BOA can be modeled analogously to onemax

and population-wise uniform crossover. In that case, Mühlenbein and Schlierkamp-Voosen (1993)

109

showed that the number of generations until convergence grows as

Gonemax =
(π

2
− arcsin (2p− 1)

) √n

I
, (4.92)

where p is the proportion of ones on each position in the initial generation, n is the problem size,

and I is the selection intensity (see Equation 4.91). For most commonly used selection methods—

such as tournament and truncation selection—the selection intensity is constant and the number

of generations is therefore bounded by

Gonemax = O(
√

n). (4.93)

Although the exact approximation of G given in Equation 4.92 is correct only for a simple model

with no interactions applied to the onemax case, the model can be used to accurately model

the convergence time of BOA on many other decomposable problems where the order of each

subproblem is bounded by a constant and the contributions of all the subproblems are scaled the

same (see Miller and Goldberg (1996a) and Pelikan, Goldberg, and Cantú-Paz (2000a)). When the

dynamics of the fitness variance is similar to the onemax case, Equation 4.92 approximates the time

to convergence very well. Even if this is not the case, the time to convergence can still be accurately

approximated by fitting G according to Equation 4.93. The reason for that behavior is that the

time convergence can be upper-bounded by the the number of generations it would take to converge

if the initial population contained only two partial solutions in each partition—the building block

and its toughest competitor. In this case, the assumptions of the onemax convergence model hold

if a proper probabilistic model is used, and the number of generations can be computed using

Equation 4.92.

Figure 4.9 (from Pelikan, Goldberg, and Cantú-Paz (2000a)) shows the number of generations

until convergence of BOA with truncation selection with s = 2, which selects the best half of the

population in each generation. The empirical results on the trap and onemax fitness functions

are compared to the prediction according to Equation 4.92. In both cases, the results match the

original approximation for onemax with the model that contains no interactions.

The above theory assumes that the population is sufficiently large. To incorporate the effects

110

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

Problem Size

N
o.

 o
f G

en
er

at
io

ns
 u

nt
il

C
on

ve
rg

en
ce

Theory
Onemax
Trap

5

Figure 4.9: Number of generations until convergence of BOA on onemax and the composed trap of
order 5. The problem sizes range from 0 to 300 bits. Large populations are used to approximate
the assymptotic behavior.

of rather small populations, the convergence model of Ceroni, Pelikan, and Goldberg (2001) can

be adopted in a similar fashion. Additionally, the above model assumes no external noise in the

fitness function. To incorporate the effects of external noise, the noisy convergence model of Miller

and Goldberg (1996a) can be used.

4.5.2 Exponential Scaling

The above convergence model assumed that all the subproblems converge in parallel. Under that

assumption, the number of generations until convergence is O(
√

n). However, if the scaling of

the subproblems is such that the subproblems converge sequentially, the time to convergence can

further increase (Thierens, Goldberg, & Pereira, 1998; Lobo, Goldberg, & Pelikan, 2000; Rothlauf,

2001; Albert, 2001).

Let us get back to the example problem of exponentially scaled subproblems—the binary in-

teger (see Equation 4.7). The binary integer converges one bit at a time, and its overall time to

convergence is therefore proportional to the number of bits (Thierens, Goldberg, & Pereira, 1998):

GbinInt = O(n), (4.94)

where n is the number of bits in the problem (problem size).

111

Since number of generations until convergence increases with the number of phases (different

levels of scaling), the linear time gives us an upper bound on the time to convergence for decom-

posable problems of bounded difficulty. Regardless of the scaling of the different building blocks in

the problem, the time to convergence should be somewhere between O(
√

n) and O(n).

4.6 How Does BOA Scale Up?

Section 4.1 has argued that the number of fitness evaluations is an important quantity for deter-

mining the overall computational complexity of BOA. The section has stated that the number of

evaluations can be bounded by a product of the population size and the number of generations until

convergence. Boundary cases have been then analyzed and the bounds on both the population size

as well as the number of generations until convergence have been presented. This section puts all

the pieces of the theory together and computes the overall number of function evaluations until

convergence to the optimum.

The overall result is summarized in Table 4.4. Under the assumption that the problem is

decomposable into the subproblems of bounded order, there are two extreme cases. One one hand,

if the subproblems in the decomposition are scaled the same, the total number of evaluations is

given by

Euni = O(n1.55). (4.95)

On the other hand, if the subproblems are scaled exponentially, the total number of fitness evalu-

ations is given by

Eexp = O(n2). (4.96)

In both cases, the total number of evaluations is bounded by a low-order polynomial of the problem

size.

Let us now compare the above result to the local search; in particular, consider the stochastic

hill climber with bit-flip mutation described in Section 2.2.1. The hill-climber requires O(nk lnn)

fitness evaluations for the problem decomposable into subproblems of order k. While in BOA

the difficulty of the problem (expressed in the form of k) is hidden in the constants preceding a

polynomial of the fixed order, in the hill climber the difficulty directly affects the order of the growth

112

Problem Size BOA HC
n = 100 1.00 1.00
n = 200 2.93 32.00
n = 300 5.49 243.00
n = 400 8.57 1,024.00
n = 500 12.12 3,125.00

Table 4.3: The factor by which the number of evaluations increases in BOA and the hill climber
(HC) on the problem decomposable into the uniformly scaled subproblems of order k = 5 (e.g.,
composed trap of order 5). Compared to the problem of size n = 100, the number of evaluations
required by BOA to solve the problem of size n = 500 increases approximately 12.12 times, while
the number of evaluations required by the stochastic hill climber increases 3, 125 times.

of the number of evaluations. Although for k = 1 or k = 2 this does not make a big difference,

for moderate values of k the difference becomes the one between the tractable and the intractable

(recall the comparison presented in the previous chapter in figures 3.11 and 3.12).

To get a better idea of the difference between BOA and the hill climber, consider the following

example (see Table 4.6 for a summary of the example). Assume that both algorithms are capable

of solving the problem of size n = 100 decomposable into subproblems of order k = 5 (e.g., the

composed trap of order 5). To solve the same problem of twice the size, n = 200, the number of

evaluations required by BOA would increase about 2.93 times, whereas the number of evaluations

required by the hill climber would increase 32 times. If we were to solve the problem of size n = 300,

the number of evaluations compared to the problem of size n = 100 for BOA would be larger by a

factor of 5.49, while for the hill climber it would be 243. The difference further increases with the

problem size. For instance, for the problem of size n = 500, the factor is only 12.12 for BOA but

it is 3, 125 for the hill climber.

The situation becomes somewhat more complicated if the order of the building blocks in the

problem is not bounded by a constant but grows with the problem size instead. It can be argued

that if the character of the subproblems does not change much and their order grows logarithmically

with the problem size, the performance further increases to a polynomial of higher order, because

of the terms 2k in the population-sizing bounds. Further refinement and generalization of the given

theory remain for the future research.

The following section verifies the scalability estimates presented above on several problems of

bounded difficulty.

113

Uniform scaling Exponential scaling
Population size O(n1.05) O(n)

Time to convergence O(
√

n) O(n)
Total evaluations O(n1.55) O(n2)

Table 4.4: A summary of the total number of evaluations in BOA. Assuming a fixed order of problem
decomposition, the overall number of fitness evaluations is expected to grow subquadratically or
quadratically with the size of the problem.

4.7 Empirical Verification of BOA Scalability

This section verifies the above estimates of the population size and the number of generations until

convergence by comparing the theoretical estimations and the actual performance of BOA. The

first part considers uniformly scaled problems and the second one considers exponentially scaled

problems.

All the experiments are done within the same framework. For each problem and each problem

size, 30 independent runs have been performed, and the population size was determined by the

bisection method as the minimal population size for the algorithm to succeed in all of the 30

runs. Binary tournament selection without replacement was used. The worst half of the original

population is replaced by the same number of offspring. BIC metric was used to build the model

based on the selected population. Each generation, the model was created from scratch. All results

were averaged over the 30 independent runs performed as described above.

4.7.1 Uniform Scaling

To verify the scalability results for uniform problems, BOA was tested on onemax, the composed

trap of order 5, and the composed deceptive function of order 3. Onemax is defined as the sum of

bits in the input string (see Section 2.2.1). The composed trap function of order 5 is defined as the

sum of single trap functions of order 5 over non-overlapping 5-bit partitions of the solution strings

(see Section 2.2.2 on page 27 for the detailed definition). Again, the partitioning in the composed

trap is fixed but there is no information about the positions in each partition. The two optima in

each trap are given by flow = 4 and fhigh = 5. The composed deceptive function of order 3 (Pelikan

et al., 1998) is defined as the sum of single deceptive functions of order 3 over non-overlapping

3-bit partitions of the solution strings. Similarly as in the trap, the partitioning in the composed

114

100 200 300 400 500

200

300

400

500

600

700

800

900

1000

1100

Problem Size

P
op

ul
at

io
n

S
iz

e
Experiment
Theory

(a) Population size (arithmetic scale).

100 200 300 400 500

5000

10000

15000

20000

25000

30000

35000

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns

Experiment
Theory

(b) Number of evaluations (log scale).

Figure 4.10: The performance of BOA on onemax for the problem sizes ranging from n = 100 to
n = 500 bits. The required population size and the number of evaluations until the optimum was
found are shown and compared to the theory. The empirical results match theory well.

deceptive function is fixed but there is no information about the positions in each deceptive block.

The fitness contribution of each block of 3 bits is given by Equation 3.6.

On onemax, the model learned by BOA does not have to encode any interactions. Therefore,

the model-building population sizing does not have to be considered and the expected performance

of BOA should be close to that of the simple GA with population-wise uniform crossover. The pop-

ulation sizing should follow the gambler’s ruin model (Harik, 1999), and the number of generations

should follow the onemax convergence model for population-wise uniform crossover (Mühlenbein &

Schlierkamp-Voosen, 1993). Therefore, the total number of evaluations should grow as O(n log n).

Figure 4.10 shows the total number of evaluations until the convergence of BOA on onemax. The

results much the theory well. However, due to the errors in sampling the solutions using finite pop-

ulations, BOA finds some unnecessary dependencies; consequently, BOA processes larger partitions

than necessary, and its performance increases compared to the simple GA with uniform crossover,

which represents a “perfect” model for this case. The increase can be explained by the gambler’s

ruin population-sizing model (Harik, 1999), which predicts that the population size should grow

exponentially with the size of the building blocks.

Figure 4.11 shows the population size and the total number of evaluations until the optimum

115

100 150 200 250

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

x 10
4

Problem Size

P
op

ul
at

io
n

S
iz

e

Experiment
Theory

(a) Population size (arithmetic scale).

100 125 150 175 200 225 250

100000

150000

200000

250000

300000

350000

400000

450000
500000

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns

Experiment
Theory

(b) Number of evaluations (log scale).

Figure 4.11: The performance of BOA on the composed trap function of order 5 for the problem
sizes ranging from n = 100 to n = 250 bits. The required population size and the number of
evaluations until the optimum was found are shown and compared to the theory. The results
match the theory well.

was found on the composed trap function of order 5 of varying problem size. The size of the tested

problems ranged from n = 100 to n = 250. Figure 4.12 shows the population size and the total

number of evaluations until the optimum was found on the composed deceptive function of order 3

of varying problem size. The size of the tested problems ranged from n = 60 to n = 240.

The latter two problems (trap and deceptive) require that the model learned by BOA is cor-

rect. The population-sizing model for building a correct model must therefore be considered.

The expected number of evaluations should grow as O(n1.55). The results show that the BOA

population-sizing theory approximates the expected number of evaluations well, although as dis-

cussed in the previous chapter, a better fit is obtained by O(n1.65). The differences appear due to

the effects of finite populations and the approximations made in developing the theory. However,

in both cases the growth follows the expected results accurately and we can thus conclude that the

theory approximates the actual performance well.

116

100 150 200 250

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

Problem Size

P
op

ul
at

io
n

S
iz

e
Experiment
Theory

(a) Population size (arithmetic scale).

60 90 120 150 180 210 240

30000

50000

100000

150000

200000

250000

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns

Experiment
Theory

(b) Number of evaluations (log scale).

Figure 4.12: The performance of BOA on the composed deceptive function of order 3 for the
problem sizes ranging from n = 60 to n = 240 bits. The required population size and the number
of evaluations until the optimum was found are shown and compared to the theory. The empirical
results match theory well.

4.7.2 Exponential Scaling

To compare the results for exponentially scaled problems, we modified the composed deceptive

function of order 3 by scaling the partitions corresponding to the deceptive functions so that the

signal decreases exponentially in a specified sequence of partitions. To ensure that a particular

partition in the sequence depends more than all the subsequent partitions according to the sequence,

it is sufficient to multiple the ith partition by ci, where c satisfies the following inequality:

0.1c
n
3 >

n

3
− 1. (4.97)

The last equation restricts c so that the smallest signal coming from ith partition is greater than

the sum of the maximum signals coming from the remaining partitions on positions 1 to (i− 1) in

the sequence.

Figure 4.13 shows the required population size and the total number of evaluations until the

optimum was found for the function described above. The size of the tested problems ranged from

n = 60 to n = 210. Similarly as in the case of uniform scaling, the theoretical growth of the

population size and the number of evaluations was fitted to the empirical results. The growth

117

60 80 100 120 140 160 180 200 220
3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

Problem Size

P
op

ul
at

io
n

S
iz

e

Experiment
Theory

(a) Population size (arithmetic scale).

60 90 120 150 180 210

2

5

10

15

20

25

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns

Experiment
Theory

x105

(b) Number of evaluations (log scale).

Figure 4.13: The performance of BOA on the exponentially scaled composed deceptive function of
order 3 for the problem sizes ranging from n = 60 to n = 240 bits. The required population size
and the number of evaluations until the optimum was found are shown and compared to theory.
The empirical results match theory well.

follows the expected results accurately and we can thus conclude that the theory approximates the

actual performance well.

4.8 Summary

This chapter developed a BOA scalability theory for problems decomposable into subproblems of

bounded order. The total number of evaluations until reliable convergence to the optimum was

used to measure BOA’s complexity. Additionally, the chapter verified the theory on an array of

decomposable problems. A summary of the key points of this chapter follows:

• The number of evaluations of the objective function until an algorithm converges to the opti-

mum with high confidence is an important quantity for analyzing the scalability of stochastic

optimization techniques. The total number of evaluations in BOA is proportional to a product

of the required population size and the number of generations until convergence:

E = O(N ×G).

118

• There are four factors influencing the population sizing in BOA:

1. Initial supply of building blocks.

2. Decision making between building blocks and their competitors.

3. Genetic drift (delayed supply of building blocks).

4. Model building.

The first three factors were studied in GA population-sizing theory (Goldberg, Deb, & Clark,

1992; Harik, Cantú-Paz, Goldberg, & Miller, 1999; Thierens, Goldberg, & Pereira, 1998;

Lobo, Goldberg, & Pelikan, 2000; Rothlauf, 2001; Albert, 2001). The chapter analyzed the

last factor—the model building.

• The analysis provided a near-linear bound on the size of the population required for finding a

correct model for uniformly scaled decomposable problems of order k with binary tournament

selection and the BIC metric:

Nuni = O(2kn1.05).

For exponentially scaled problems, the genetic-drift population-sizing model becomes domi-

nant and the population size should grow as

Nexp = O(n).

• The time to convergence was considered separately for two boundary cases of scaling the

fitness contributions of the subproblems in a proper decomposition: (1) uniform scaling, and

(2) exponential scaling. For uniform scaling, all subproblems converge in parallel and the

overall convergence time grows with the square root of the problem size,

Guni = O(
√

n).

For exponentially scaled subproblems the convergence proceeds sequentially, one or a few

subproblems at a time, and the overall number of generations grows at most linearly with the

119

problem size,

Gexp = O(n).

• The total number of evaluations until convergence can be estimated by

Euni = O(2kn1.55)

for uniformly scaled subproblems, and

Eexp = O(n2)

for exponentially scaled subproblems.

• The hill climber’s performance depends on the order k of the subproblems in a proper problem

decomposition and the overall time to convergence grows as O(nk lnn). On the other hand,

in BOA the order k is hidden in the constants in front of the polynomial of a fixed, low order;

BOA converges in O(n1.55) or O(n2) independently of k (assuming k is upper-bounded by a

constant).

• The difference between BOA and the hill climber grows with k. For example, for the problem

of size n = 500 decomposable into equally scaled subproblems of order k = 5, the number of

evaluations required by BOA increases by a factor of about 12 compared to the same problem

of size n = 100, while for hill climber the factor becomes 3, 125.

120

Chapter 5

The Challenge of Hierarchical
Difficulty

Thus far, we have examined the Bayesian optimization algorithm (BOA), empirical results of its

application to several problems of bounded difficulty, and the scalability theory supporting those

empirical results. It has been shown that BOA can tackle problems that are decomposable into

subproblems of bounded order in a scalable manner and that it outperforms local search methods on

difficult decomposable problems. But can BOA be extended beyond problems of bounded difficulty

to solve other important classes of problems? What other classes of problems should be considered?

The purpose of this chapter is twofold. First, the chapter poses the challenge of solving prob-

lems that are not decomposable into subproblems of bounded order, but can be decomposed over

a number of levels of difficulty into a hierarchy. The chapter identifies the important features that

must be incorporated into BOA to solve such problems in a scalable manner. Second, the chap-

ter presents a class of hierarchically difficult problems that challenge any optimization algorithm

because of the three inherent features of this class of problems. First of all, the designed prob-

lems are not decomposable into subproblems of bounded difficulty. Second, the problems contain

exponentially many local optima that make the problems unsuitable for any local search. Finally,

the problems deceive any optimization technique based on local operators away from the global

optimum except for several special cases.

The chapter starts by motivating the use of hierarchical decomposition in reducing the com-

plexity of the problem. Section 5.2 introduces basic concepts of the hierarchical problem solving

and presents the important features that must be incorporated into BOA to extend its applicability

121

University

College of Fine & Applied Arts

Dept. of Dance Dept. of Theatre

College of Engineering

Dept. of
Computer Science

Dept. of
General Engineering

Dept. of
Mechanical Eng.

College of Commerce and
Business Administration

Dept. of Economics
Dept. of

Accountancy
Dept. of

Business Administration

Figure 5.1: The hierarchical structure of a university. The figure shows only a small fraction of the
complex organizational hierarchy.

to hierarchical problems. Section 5.3 proposes the class of problems called hierarchical traps that

challenge any problem solver. Finally, Section 5.4 summarizes the chapter.

5.1 Hierarchical Decomposition

Many complex systems and processes in business, engineering, science, as well as nature, are hier-

archical. By hierarchy, we mean a system composed of subsystems each of which is a hierarchy by

itself until we reach some bottom level (Simon, 1968). Interactions within each subsystem are of

much higher magnitude than the interactions between the subsystems. There are plenty of hierar-

chy examples around us. A human body is composed of organs, organs are composed of tissues,

tissues are composed of cells, and so forth. A university (see Figure 5.1) is composed of colleges,

colleges are composed of departments, departments are composed of laboratories and offices, and

so forth. A program code is composed of procedures and functions, procedures are composed of

single commands and library calls, commands are composed of machine code or assembly language,

and so forth.

Why do we talk about hierarchy when what we are really interested in is problem solving

and optimization? Most of the complex problems that humans have successfully solved could be

tackled only because of the use of hierarchical decomposition. Single-level decomposition discussed

in the previous chapters by itself simplifies the problems by allowing the solver to focus on multiple

simpler problems instead of one large problem. However, not every problem can be decomposed

into tractable subproblems; such decomposition may be obstructed due to the rich interaction

structure of the problem or the lack of feedback for discriminating alternative solutions to the

122

different subproblems in a fine enough decomposition. Hierarchical decomposition adds a new level

of complexity reduction by allowing the decomposition to go down a number of levels until we

finally get to the problem that we can solve. Of course, as discussed above, the subproblems in the

decomposition on each level are allowed to interact, but the interactions within each subproblem

must be of much higher magnitude than those between the subproblems.

5.2 Computer Design, von Neumann, and Three Keys to

Hierarchy Success.

This section identifies three important issues one must consider to solve difficult hierarchical prob-

lems quickly, accurately, and reliably. An intuitive example drawn from computer design informally

motivates each issue, which is then formalized and discussed in context of computational optimiza-

tion and search.

For many of us, computers have become just as important part of our everyday life as cars,

refrigerators, and toasters. However, the computer design is an extremely difficult task and many

great minds contributed to the effort of making that dream come true. One of the most important

contributions to this effort was that of John L. von Neumann who decomposed the design of the

“general-purpose computing machine” into four basic components, each of which focused on one

task, in particular, arithmetic, memory, control, and connection with the human operator. These

four subsystems have formed the basis of most computers up to date as the arithmetic/logic unit,

the memory, the control unit, and the input/output devices (see Figure 5.2).

Further reduction of complexity calls for the use of hierarchy. Each of the four components

can be simplified by an additional level of decomposition. For example, a typical hard drive1 is

composed of the controller, heads, magnetic disks, and so forth. Decomposition can go down a

number of levels until the problems on the bottom level become tractable.

Although the components on each level in the computer decomposition interact, the design

of these components can be oftentimes considered independently. For example, the design of the

memory unit does not depend much on the design of the input/output interface. That is why
1Hard disk drive—often shortened as hard disk or hard drive—is a frequently used permanent memory device.

Hard drives are much slower than on-chip memories, but they allow permanent storage of large amounts of data and
are much cheaper. Hard disks also allow a relatively fast access to any location of the media.

123

Devices
Input/Output

Arithmetic/Logic
Unit

Control Unit

Central Processing Unit (CPU)

Memory

Figure 5.2: Von Neumann’s computer architecture consists of the four main units: (1) control unit,
(2) arithmetic/logic unit, (3) input/output unit, and (4) memory unit. The component composed
of the control unit and the arithmetic/logic unit forms what we now call the central processing unit
(CPU).

the researchers that are trying to make computer memory chips smaller, faster, and cheaper, do

not have to consult each their invention or experience with the ones developing easier-to-use, more

powerful, and cheaper input/output devices. Decomposition (and repeated decomposition) is where

the simplification of the problem comes from. That leads to the first key to hierarchy success:

Issue 1: Proper decomposition. On each level of problem solving, we must be capable of de-

composing the problem properly. The decomposition allows the solver to focus on the different

subtasks in separation and thus reduce complexity. The decomposition can be as simple as

the partitioning of the decision variables in the problem into several disjoint subsets but it

can be as complex as the graphs with a bounded number of neighbors of each node.

When a particular memory device, such as a hard drive, has been constructed, it becomes ir-

relevant to consider the details concerning the material or technology used; only several important

features suffice. Elimination of irrelevant features of the subsystems from the lower level of the

hierarchy reduces the complexity of juxtaposing the subsystems on the current level. In the hierar-

chical problem solver, it is desirable to eliminate irrelevant details of the solutions from lower levels

and represent these in a compact way. This leads to the second key to hierarchy success:

Issue 2: Chunking. The solutions to the subproblems from the lower level can be seen as chunks

of the solutions that are used as basic building blocks for constructing the solutions on the

124

current level. In other words, the partial solutions to each subproblem can be treated as the

instances of a single variable that is used to compose the solutions on the next level. The

hierarchical problem solver must be capable of representing these chunks of solutions from

lower levels in a compact way so that only relevant features are considered.

There are many alternative processors, motherboards, memory chips, and hard drives, which

can be used to construct the computer system. The requirements on the final design may suggest

which of the alternatives is the best one, but the feedback on the current level may be insufficient

to do so. Some of these hard-to-decide choices in the history of computer architecture include the

number of machine instructions of CPU2 and the number of registers used by CPU. Furthermore,

the features of one component may strongly influence the requirements on another component. For

instance, better control devices for hard drives enable faster processing of the requests and allow

more complex hardware ensuring the physical task of storing and retrieving the data. That is why

it is necessary that multiple alternatives are maintained for each component and the final choice is

made only when there is enough feedback to discard some alternatives. This leads to the third key

of hierarchy success:

Issue 3: Preservation of alternative candidate solutions. The hierarchical problem solver

must be capable of preserving multiple alternative solutions to each subproblem. There

are two reasons for doing this:

(1) On the current level there may not be a sufficient feedback to discriminate among a few

best alternative solutions to the considered subproblem.

(2) Although the subproblems on the current level are considered independent, interactions

on some higher level or levels may lead to new information that favors some of the

alternatives over others.

The previous chapters have shown that BOA is capable of learning a proper decomposition of the

problem as the optimization proceeds and using the learned decomposition to propagate promising

partial solutions corresponding to each subproblem. BOA is thus a good starting point in the design
2CPU stands for the central processing unit that is composed of the control unit, the arithmetic/logic unit, and

the set of registers.

125

of a hierarchical problem solver or optimizer. However, the remaining keys to hierarchy success—

the chunking and the preservation of alternative solutions—must first be incorporated into the

basic algorithm. We return to this topic in the following chapter. Here we continue by describing

the class of hierarchical problems that challenge any optimization algorithm, because they are not

decomposable on a single level and because they are intractable for most popular optimization

techniques to date. In addition to providing a challenge for the optimizers, the designed class of

problems should clarify the ideas of hierarchical problem solving and decomposition.

5.3 The Design of Challenging Hierarchical Problems

It is common in the design of material machines like airplanes and toasters to test the design at

the boundary of its design envelope. To test an algorithm on whether it is capable of exploiting

decompositional bias in a scalable manner, composed traps introduced earlier in this thesis can be

used. However, all the previously discussed problems were solvable by a single-level decomposition

without forcing the use of a more robust and general bias based on hierarchy.

The purpose of this section is to design a class of challenging hierarchical problems that can be

used to test the scalability of the algorithms on difficult hierarchical problems. The design is guided

by the three keys to hierarchy success presented in the previous section: (1) proper decomposition,

(2) chunking, and (3) preservation of alternative solutions. The section starts by introducing a

general class of hierarchically decomposable test problems. Next, the section motivates the design

of the class of hierarchical trap functions and presents several such functions.

5.3.1 Example: Tobacco Road

To get a better idea of what we mean by a hierarchical function—in particular, a challenging

hierarchical function—let us start with an example called the tobacco road function introduced

by Goldberg (1998). To better understand the example, please follow Figure 5.3.

The tobacco road function is defined on two levels. On the bottom level, the input string is

partitioned into partitions of 6 bits each, where each partition is evaluated using the folded trap

function of order 6 (see Figure 5.4). The partitioning can be chosen arbitrarily but it remains fixed

for all evaluations. The folded trap has two global optima, one in 000000 and the other one in

126

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 1 1 1

1. Fitness evaluation on the 1st level.

2. Mapping the partitions to the 2nd level.

1 0 0 1 1 1

1 1 1 1 1 1

3. Fitness evaluation on the 2nd level.

4. Computation of the overall fitness.

f = 1 + 0.9 + 0.9 + 1 + 1 + 1 = 5.8

g = 1.0

fitness = f + g = 5.8 + 1.0 = 6.8

Figure 5.3: The tobacco road function is defined on two levels. The solution on the bottom level
is first evaluated using the folded traps and then mapped to form the solution on the second level.
The second-level solution is then evaluated using the traps and the overall fitness is computed by
adding the contributions of both the levels together.

127

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of ones, u

f(
u)

Figure 5.4: The folded trap function contains two global optima, one in the string of all zeroes, and
one in the string of all ones. Additionally, the folded trap contains a number of deceptive attractors
in the strings with half zeroes and half ones. Deception and multimodality make folded traps a
great challenge for any optimization method.

111111. Additionally, the folded trap function contains a large number of local optima in all the

strings that contain half ones and half zeroes, which is right in the middle between the two global

optima. Similarly as the single trap, the folded trap cannot be decomposed without losing the

global optima and converging to some of the local ones. Moreover, the deception in the folded trap

is somewhat more harmful than the one in the single trap, since the folded trap contains many

more local optima than the global ones.

The bits in each partition corresponding to one of the folded traps are then mapped to one

particular bit on the next level: 000000 maps to 0, 111111 maps to 1, and the rest maps to a null

value that stands for an undefined bit and is denoted by ’-’. After mapping the partitions, the next

level contains six times less bits than the bottom level and some of those bits are undefined.

The new bits on the second level are then partitioned into partitions of 6 bits. Again, the

partitioning is fixed for all evaluations. Note that each partition of 6 bits on the second level is

determined by some subset of 36 bits on the bottom level. Each of the 6-bit partitions of the second

level contribute to the overall fitness function by the trap function (see Figure 1.4). If some of the

bits in a particular partition are undefined, the contribution of the partition is set to 0.

Finally, the fitness contributions of both the levels are added together to determine the overall

fitness of the evaluated solution.

128

The tobacco road function can be solved in either one or two stages. If the algorithm approaches

the tobacco road in one stage, the decomposition must contain chunks of 36 bits. Although it is

possible to consider subproblems of such a high order, this is not necessary. Solving the problem in

two stages yields much more promising results. In particular, the first phase can focus on optimizing

the bottom level yielding solutions with blocks 000000 and 111111 on all partitions of the bottom-

level decomposition. If the algorithm was capable of recognizing that blocks 000000 and 111111

actually represent only two alternatives and treated them as if they were single bits, the second

stage would proceed analogously to the first stage and the blocks would be combined to form the

optimum.

The difference between the two approaches—the single-stage, single-level approach and the two-

stage, hierarchical approach—is in the order of subproblems that must be considered to find the

optimum. An important observation is that the number of fitness evaluations will differ by a factor

of about 230, because the overall complexity grows exponentially with the order of the problem

decomposition. In other words, just considering the problem on two levels decreases the number of

evaluations by a factor of more than one billion—more precisely, 1, 073, 741, 824.

The tobacco road function is also extremely difficult for any local search. Since the blocks of 36

bits must be considered if approached on a single level, the performance of the hill climber would

grow with O(n36 lnn). Although n36 is a polynomial, solving the problem in O(n36 lnn) evaluations

becomes intractable incredibly fast.

Therefore, there is no question whether the tobacco road functions are challenging for BOA

or any other optimization algorithm. Furthermore, the difference between the hierarchical and

single-level approaches increases with the number of levels and even more difficult problems could

be therefore designed in a straightforward manner.

The following section formalizes the notion of hierarchically decomposable problems. Subse-

quently, the class of hierarchical trap functions is introduced where the number of levels grows with

the problem size.

129

5.3.2 Hierarchically Decomposable Functions

The idea of using hierarchical functions in challenging GAs and other optimization techniques dates

back to the works on royal road functions of Mitchell, Forrest, and Holland (1992), hierarchical

if-and-only-if functions of Watson, Hornby, and Pollack (1998), tobacco road functions of Goldberg

(1998), hyperplane-defined functions of Holland (2000), and others (Pelikan & Goldberg, 2000b;

Pelikan & Goldberg, 2001). This section attempts to formalize all of the aforementioned approaches

similarly as it was done by Watson, Hornby, and Pollack (1998), and Pelikan and Goldberg (2000b).

Hierarchically decomposable functions (HDFs) are defined on multiple levels. The solution on

each level is partitioned according to the structure of the function. The bits can be partitioned

arbitrarily, but the partitioning must be fixed for all evaluations. The block of bits in each partition

is evaluated according to some function. Each block is then mapped to the next level into a single

symbol of some alphabet. The mapping functions can be chosen arbitrarily. The overall fitness

is computed by summing the contributions of all the partitions on all the levels. More formally,

an HDF can be defined by the following three components (see Figure 5.5 for the definition of the

components for the tobacco road function):

1. Structure. The structure of the function defines the way in which the variables on each level

are partitioned. Partitions are used to both contribute to the fitness of the solution and map

to the next level. The structure forms a tree with one-to-one mapping between the leaves of

the tree and the variables in the problem. Here we only use balanced trees of fixed order3.

The levels are numbered from the bottom—the first level is composed of the leaves, and the

last level is made of the children of the root. In most cases we omit the root because it is

unnecessary.

2. Mapping functions. The mapping functions, also called the interpretation functions, define

how to map solutions from a lower level to become inputs of both the contribution and

interpretation functions on the current level.

3. Contribution functions. The contribution functions define how much the partitions of
3Balanced trees are those where for every internal node (node with children), the number of descendants of each

its child is the same. In the tree of fixed order, the number of children (direct successors) is equal either to the given
order (internal node) or to 0 (leaf).

130

111111 1
000000 0

anything else − (NULL)

 Mapping function

Structure

Level 2

Level 1
(input string)

Contribution functions

Figure 5.5: The three components defining the tobacco road function. The size of the example
problem is 36 bits.

the decomposition on each level contribute to the overall fitness. Since the mapping of the

solution to the next level reduces the number of partitions on the next level, it is often useful

to scale the contributions on each level so that the total contribution of each level remains

the same.

Before describing hierarchical traps, we present the aforementioned functions that contain some

form of hierarchy and discuss their problem difficulty. Later we shall argue that hierarchical traps

challenge optimization methods in a qualitatively different way and that without “cheating” there

is no way of getting around the difficulty introduced by hierarchical traps.

5.3.3 Another Example: Royal Road

The class of royal road functions was proposed by Mitchell, Forrest, and Holland (1992) as a way of

describing the hierarchical nature of optimization in GAs and providing an example function that

GAs were born to solve. Although royal roads lack in several aspects of the problem difficulty that

we are interested in, the idea of hierarchy in GA problem solving manifested by GA behavior on

the royal roads was an interesting and influential one.

A general definition of the royal road functions is given by the list of fitness contributions of

a subset of partial solutions (Mitchell, Forrest, & Holland, 1992). Here we only discuss a simple

royal road function adopted from Mitchell et al. (1992) that contains hierarchy and thus relates to

131

(input string)
Level 1

11111111 1
anything else − (NULL)

 Mapping functions

Structure

Level 2

Level 3

11 1
anything else − (NULL)

11111111 8
anything else 0

level=1 to level+1:

level>1 to level+1: level>1:

level=1:

11
level−1

8 2
anything else 0

Contribution functions

Figure 5.6: The three components defining the royal road function. The size of the example problem
is 32 bits.

the topic of hierarchical difficulty studied in this chapter.

The value of the royal road for the input binary string is computed in several stages. In the

first stage, the input binary string solution is partitioned into partitions of 8 consecutive bits each.

Each block of bits in these partitions contributes to the overall fitness by 8 if the block is 11111111;

otherwise, the block does not contribute to the overall fitness at all. Each subsequent stage merges

the pairs of neighboring blocks together, yielding half as many blocks of twice as large order. In the

second stage, for instance, blocks of 16 consequent bits each are created. Each of the created blocks

of bits then contributes to the overall fitness by the number of bits included in the block if all the bits

in the block are 1. So in the second stage, for instance, each block 1111111111111111 contributes

to the overall fitness by 16. The evaluation continues until the block covers the entire string; the

string length should therefore be limited to the powers of 2 multiplied by 8. See Figure 5.6 for the

three-component HDF definition of the royal road.

The royal road described above has one global optimum in the string of all ones and no local

optima. The fitness contributions of the blocks of ones grow with the size of the blocks and all the

signal leads to the global optimum. Consequently, GAs are able to solve the royal roads efficiently.

However, because of the same reasons, the royal roads are easy even for the stochastic hill climber

described in Section 2.2.1. The reason for this is that in the royal roads, there is nothing to mislead

132

the hill climber to the wrong direction and it is sufficient that the hill climber is capable of crossing

8-bit plateaus. Even more importantly, the royal roads do not challenge the algorithm to obey the

three keys to hierarchy success presented before and are efficiently solvable by any of the standard

GAs.

5.3.4 Yet Another Example: Hierarchical If-and-Only-If (HIFF)

The hierarchical if-and-only-if function was proposed by Watson, Hornby, and Pollack (1998) as

an example of a function that is not separable and should therefore challenge even those GAs

that are capable of linkage learning. Although it is not necessary to introduce interdependencies

of unbounded order to make traditional GAs fail4, HIFF joins other decomposable problems of

bounded difficulty in the club of functions that are difficult to solve using traditional GA operators.

The structure of HIFF is a balanced binary tree. The input to the contribution and mapping

functions therefore consists of two symbols. A single mapping function is used on all levels where

00 is mapped into 0, 11 is mapped into 1, and everything else is mapped into the null symbol ’-’.

On each level, blocks 00 and 11 contribute to the overall fitness by 2level, where level is the number

of the current level (again, the bottom level is level 1). Anything else does not contribute to the

overall fitness. In Watson’s definition of HIFF (Watson, Hornby, & Pollack, 1998), the leaves in

the tree (the single bits) contribute to the fitness by 1, so the entire fitness is increased by the

problem size n. Since the structure must be a balanced binary tree, the size of the problem should

be restricted to the powers of 2. Figure 5.7 shows the three HDF components defining HIFF.

HIFF has two global optima, one in the string of all ones and one in the string of all zeroes. To

successfully solve HIFF, the algorithm must preserve either zeroes or ones on all string positions to

ensure that the optimum can be reached. Although the loss of particular bits on some positions can

be taken care of by mutation or other local operator, the complexity of changing any partition grows

exponentially with its order and, therefore, there must be a limited number of such problematic

positions. There are two alternative ways of solving HIFF. The algorithm can decide whether to

go after zeroes or ones, or preserve both alternatives as the optimization proceeds. In the latter

case, the algorithm must ensure preservation of the partitions on the current level of optimization,
4Recall composed traps, which beat uniform crossover (see Section 2.2.2).

133

Level 2

00 2
level

level
211

00 0

anything else − (NULL)
11 1

 Mapping functions

anything else 0

Level 4

Level 5

Structure

Level 1
(input string)

Level 3

Contribution functions

Figure 5.7: The three components defining the HIFF function. The size of the example problem is
32 bits.

because mixing zeros and ones moves the optimization one or more levels down. Of course, the

chunks of ones and zeroes must be combined together. The last issue brings us back to linkage

learning.

The following section presents hierarchical traps, which add new difficulty to tobacco road

functions and HIFF by combining the ideas of the two designs into one.

5.3.5 Hierarchical Trap Functions: The Ultimate Challenge

Before designing hierarchical traps, let us recall the important goals of the design:

1. Force proper decomposition. Hierarchical traps must force the algorithm to learn a proper

decomposition. In other words, if the algorithm fails to do this, the computational complexity

will grow with the problem size prohibitively fast or the optimum will not be found at all.

2. Force preservation of alternative solutions. Hierarchical traps must force the algorithm

to preserve alternative partial solutions. Failing to do this should result in either intractable

or unsuccessful search for the global optimum.

134

3. Force chunking. Hierarchical traps must force the algorithm to manipulate large pieces

of solutions. Similarly as in the above two cases, failing to do this should result in either

intractable or unsuccessful search for the global optima.

To ensure the achievement of all the above goals, the features of the tobacco road function

and HIFF are combined with the ones of challenging problems decomposable on the single level

represented by the trap functions. We start by presenting the general definition of hierarchical

traps. Subsequently, we specialize the general structure yielding two important hierarchical trap

problems that are used in the remainder of the thesis.

The three components defining a general hierarchical trap are listed in the following (see also

Figure 5.8):

1. Structure. Hierarchical trap functions use a balanced k-ary tree as the underlying structure,

where k ≥ 3. The minimal k is given by the minimal order of deceptive functions that are

to be used as contribution functions. Since we are interested in the scalability of the tested

algorithm and the problem sizes must grow as powers of k, it is reasonable to set k to a small

value, preferably 3.

2. Mapping Functions. The mapping functions map blocks of all 0’s and 1’s to 0 and 1,

respectively, similarly as in the tobacco road and HIFF. Everything else is mapped to ’-’.

3. Contribution Functions. Contribution functions are based on the trap function of order

k (see Figure 1.4):

trapk(u) =

⎧⎪⎨
⎪⎩

fhigh if u = k

flow − u flow
k−1 otherwise

·

The height of the two optima in each trap (denoted by flow and fhigh) depends on the current

level. The difficulty of hierarchical traps can be tuned by parameters flow and fhigh on the

different levels.

Let us now specify the parameters for the two hierarchical traps that are going to be used in our

experiments, denoted by fhtrap1 and fhtrap2, respectively. In both fhtrap1 and fhtrap2, the underlying

structure is a ternary tree (i.e., k = 3). The two hierarchical traps differ in the parameters flow

and fhigh on each level.

135

(input string)
Level 1

All levels except for the top one Top level

 Mapping functions

Structure

Level 2

Level 3

000 0
111 1

anything else − (NULL)

Contribution functions

Figure 5.8: The three components defining the hierarchical trap function of order k = 3. The size
of the example problem is 27 bits. The problem size of n = 27 implies that there are three levels
in the problem.

The hierarchical trap fhtrap1 sets fhigh = flow = 1 on all levels except for the top one. That

means that in the traps on all the levels except for the top one, the two optima are equally good.

In the trap on the top level, the optimum in 111 has a value of fhigh = 1 and the optimum in 000

has the value of flow = 0.9. The contributions on each level are multiplied by 3level so that the

total contribution of each level is the same. There are several features of fhtrap1 worth mentioning

at this point:

• There is no way of deciding whether 000 is better than 111 in any subproblem on all levels

except for the top one, and even that only if the global optimum has already been found. For

example, the solution 111111000 has the same fitness as the solution 000111000, although the

latter solution is much farther from the global optimum in 111111111.

• For each subproblem on any level, 000 is easier to find than 111 because it is surrounded by

high-quality solutions. Therefore, we can expect that the number of ones decreases as the

search goes up a number of levels.

• Because of the character of traps, small, local changes in non-optimal solutions lead away

from the optimum in most cases.

136

The hierarchical trap fhtrap2 also uses the trap with fhigh = 1 and flow = 0.9 on the top level.

However, fhtrap2 makes the bias toward the solutions containing many zeroes even stronger by

making the peak flow higher than the peak fhigh on all levels except for the top one. In this case,

the optimum in 111 is not only isolated but also local. To ensure that the optimum still remains

in the string of all ones, values of flow and fhigh must satisfy the following inequality:

(l − 1) (flow − fhigh) < 0.1, (5.1)

where l is the total number of levels. The last equation must be satisfied so that the difference

between the peaks on the top level is greater than the sum of the differences on the remaining

levels. We set fhigh = 1 and flow = 1 + 0.1/k on all levels except for the top one. Similarly as in

the previous case, the contributions on each level are multiplied by 3level. There is one additional

difficulty of searching fhtrap2 compared to fhtrap1:

• If the algorithm does not preserve 111 in spite of that 000 performs slightly better, the

optimum cannot be found. Recall the example presented earlier in this section. For fhtrap2,

despite that 111111000 is much closer to the global optimum in 111111111 than 000111000 is,

the fitness of 000111000 is greater than the fitness of 111111000 (while in fhtrap1 the fitness

is the same for both solutions).

Hierarchical traps presented above differ from the previously proposed hierarchical functions in

several aspects. The path to the global optimum in hierarchical traps is much windier than the

one in the royal roads. Not only are the solutions with many zeroes easier to find, but if these are

disrupted the search must go down one or more levels. Unlike HIFF, hierarchical traps do not allow

the algorithm to decide whether to go toward zeroes or ones; the global optimum is in the string of

all ones, although for all levels except for the top one it is either impossible to distinguish between

zeroes and ones, or zeroes look even better than ones. The bias toward the solution of all zeroes

distinguishes hierarchical traps from HIFF and introduces a bigger challenge. Hierarchical traps

and tobacco roads share many similarities. However, hierarchical traps contain more levels than

tobacco roads do and by using low-order subproblems they allow an easier scalability analysis.

137

5.4 Summary

This chapter posed the challenge of solving problems that are not decomposable into subproblems

of bounded order, but can be decomposed over a number of levels of difficulty into a hierarchy.

The chapter identified three important features for scalable optimization of difficult hierarchical

problems. Finally, the chapter designed a class of difficult hierarchical problems called hierarchical

traps. A summary of the key points of this chapter follows:

• Hierarchy is a core component of human understanding of complex systems. Even more

importantly, hierarchy is a powerful tool for reducing problem complexity in human problem

solving.

• Hierarchy can also be used as a tool for reducing the complexity in computational optimiza-

tion. Similarly as in human problem solving, hierarchy extends the class of problems that can

be solved quickly, accurately, and reliably; it can tackle problems that are not decomposable

into tractable subproblems on a single level but can be solved by decomposing the problems

down a number of levels of difficulty.

• There are three important issues we must consider in the design of an optimizer capable of

exploiting a hierarchical decomposition:

1. Proper decomposition.

2. Chunking.

3. Preservation of alternative candidate solutions.

• The discovery and utilization of a proper decomposition were tackled in the design of the

Bayesian optimization algorithm and can be adopted at no extra cost. However, BOA must be

extended to incorporate the chunking and the preservation of alternative candidate solutions

to solve difficult hierarchical problems in a scalable manner.

• In addition to extending BOA to a scalable hierarchical problem solver, it is important to

design a class of problems that challenge the algorithm and bound the class of problems that

the algorithm can solve. A new test bed can be used as a crash test for the solvers that

attempt to solve the class of hierarchical problems and anything easier.

138

• Hierarchical traps extend the problems containing hierarchy from the past and create a novel

challenge for the problem solvers and optimizers. While composed traps can be used to test

the algorithms on their capability of solving decomposable problems, hierarchical traps can

be used to test optimizers on their ability to solve complex hierarchical problems.

139

Chapter 6

Hierarchical Bayesian Optimization
Algorithm

The previous chapter has discussed how hierarchy can be used to reduce the complexity of the

problem at hand. Additionally, the chapter has identified the three important components that

must be incorporated into BOA to make it capable of solving difficult hierarchical problems in a

scalable manner and proposed a number of artificial problems that can be used to test the scalability

of optimization methods that attempt to exploit hierarchy.

The purpose of this chapter is to extend BOA to solve difficult hierarchical problems quickly,

accurately, and reliably. The chapter discusses several such extensions and implements one of the

extensions to form the basis of hierarchical BOA (hBOA). Hierarchical BOA is then tested on the

challenging hierarchical problems presented in the previous chapter.

The chapter starts by discussing the first two keys to hierarchy success—a proper decompo-

sition and chunking. Section 6.1 describes one of the approaches to tackle both keys at once; in

particular, the section incorporates local structures into Bayesian networks to allow a compact

representation of the local conditional distributions for each variable. Section 6.2 focuses on the

last key to hierarchy success—the preservation of alternative solutions—and reviews approaches to

maintaining useful diversity in genetic and evolutionary computation. The section classifies pre-

sented diversity-maintenance techniques into several categories and discusses them in the context

of BOA. Section 6.3 summarizes the extensions of the original BOA that comprise hierarchical

BOA. Section 6.4 analyzes the performance of hierarchical BOA on several hierarchical problems,

including hierarchical traps and HIFF. Section 6.5 relates the performance of hierarchical BOA

140

with the BOA scalability theory presented in Chapter 4. Finally, the chapter is summarized.

6.1 Proper Decomposition and Chunking

Chapters 3 and 4 have shown that BOA is capable of learning and utilizing a proper decomposition

of problems that are decomposable into subproblems of a bounded order on a single level. Learning

and utilization of a proper decomposition is ensured by (1) constructing a Bayesian network that

captures important nonlinearities in the set of promising solutions and (2) sampling the learned

network to generate new candidate solutions. Bayesian networks can also be used to encode, learn,

and utilize the decomposition of hierarchical problems. However, additionally to representing the

dependencies and independencies in the problem on the current level of the search, a graphical

model must incorporate some form of chunking as described in Section 5.2.

The purpose of this section is to review alternative approaches to incorporating chunking into

BOA without compromising BOA’s capability of decomposing the problem properly. Since the

issues of chunking and learning a proper decomposition are strongly correlated, the two issues are

approached together.

The section first discusses different facets of chunking in detail. The section then describes

how local structures—such as default tables, decision trees, and decision graphs—can be used to

enhance Bayesian networks and, in turn, ensure chunking.

6.1.1 Chunking Revisited

The primary goal of chunking is to allow groups of variables from each subproblem of the lower level

to be merged into a single variable (or an intact block) that encodes all the relevant information

needed to distinguish alternative partial solutions to the particular subproblem. These merged

variables serve as the basic building blocks for composing solutions on the next level. Note that

there are two problems that must be considered:

1. Merging. The model must be capable of merging a group of variables corresponding to each

subproblem from the lower level into a single variable or a block. This can be done either

explicitly or implicitly, but the model must allow such merging to take place.

141

2. Representing partial solutions efficiently. The model must represent partial solutions

compactly so that only relevant information is considered. A compact representation is nec-

essary for ensuring that large partial solutions can be encoded in the model (either as an

intact block or a new, single, variable).

Merging the variables into groups can be incorporated by creating specialized models that can

encode dependencies and independencies among the groups of variables as opposed to dependencies

and independencies among the variables themselves. Nonetheless, since Bayesian networks have

been shown to be capable of representing the chunks of solutions of decomposable problems in

BOA, the issue of merging the variables can be taken care of using traditional Bayesian networks.

But in either case, an efficient representation of the relevant features of each chunk must be ensured.

To summarize, there are two approaches to incorporating chunking into BOA:

1. Explicit chunking. Modify the model so that partitions of the problem are allowed to

group into a single component of the model. The relationships between the chunks can then

be represented by Bayesian networks as in BOA or in some other way. Example models that

allow explicit chunking are the marginal product models (MPM) of ECGA (Harik, 1999),

Huffman networks that combine MPM with Bayesian networks (Davies & Moore, 1999), and

Bayesian networks with hidden variables (Cooper & Herskovits, 1992; Geiger, Heckerman, &

Meek, 1996). Of course, the models must represent their parameters efficiently so that large

groups of variables can be processed.

2. Implicit chunking. Ensure that the used model is capable of representing the chunks,

although the overall structure might not correspond to an intuitive notion of chunking based

on merging the variables into groups explicitly. Additionally, the models must represent their

parameters efficiently so that large chunks can be represented. An example approach from

this class are Bayesian networks with local structures, which are going to be discussed in the

following section.

Since in both approaches, a compact representation of the models is necessary and Bayesian

networks can encode the chunks at no extra cost (if a compact representation is used), the remainder

of this section focuses on implicit approaches to chunking. In particular, the section describes local

142

structures that can be used to ensure that the dependencies of high order can be encoded by the

model.

6.1.2 Local Structures in Bayesian Networks

The number of conditional probabilities that must be specified in the Bayesian network grows

exponentially with the order of interactions encoded by the network. Although in some cases,

simple models suffice and there is no need for a compact representation, the exponential growth of

the number of parameters of the model can become a bottleneck on more complex problems.

This section describes how local structures can be used to make the representation of the

conditional distributions in Bayesian networks more compact and to allow the models to include

high-order interactions. Additionally to providing a technique for chunking, local structures allow

learning and sampling more complex models with a reasonable number of parameters.

The section starts by providing an example conditional probability table that motivates the

use of local structures. Next, the section describes default tables that specify only a subset of

the conditional probabilities and set the remaining probabilities to a specified constant. Finally,

the section introduces decision trees and graphs that reduce the number of parameters in a more

general fashion.

Motivating Example

Let us start with a simple example that motivates the use of default tables and other local structures

in Bayesian networks. Assume that a binary variable X1 in the Bayesian network learned by BOA

is conditioned on 3 other binary variables denoted by X2, X3, and X4. To encode the conditional

probabilities of the different values of a binary variable conditioned on k other variables, the model

must specify 2k conditional probabilities. Note that there are 2k+1 conditional probabilities that

must be specified but half of them can be computed by using the following equation:

p(Xi = 0|Πi) = 1− p(Xi = 1|Πi), (6.1)

where Xi denotes the considered variable and Πi denotes the set of Xi’s parents. In our example,

the probabilities are set as shown in Table 6.1.

143

X2 X3 X4 p(X1 = 0|X2,X3,X4)
0 0 0 0.75
0 0 1 0.25
0 1 0 0.25
0 1 1 0.25
1 0 0 0.20
1 0 1 0.20
1 1 0 0.20
1 1 1 0.20

Table 6.1: Conditional probability table for the variable X1 that is conditioned on the variables
X2, X3, and X4. Only the probabilities of one of the values of X1 must be stored, because the
remaining probabilities can be computed using p(X1 = 1|X2,X3,X4) = 1− p(X1 = 0|X2,X3,X4).

Although three of the probabilities shown in Table 6.1 are 0.25 and four of them are 0.20,

the conditional probability table lists each single probability. Listing all the probabilities is not a

big deal for the dependencies of order three, but it will become a major bottleneck if we want to

represent the dependencies of order 50, for instance. Local structures allow the use of regularities

in the conditional probability tables and encode the probabilities in a more compact way.

The remainder of this section describes three types of local structures—default tables, decision

trees, and decision graphs—that can be used to encode the conditional probabilities in a Bayesian

network. Of course, there are many other ways to approach the same problem, but the approaches

presented in this section should provide a sufficiently powerful means for ensuring a compact rep-

resentation of Bayesian networks. The aforementioned conditional probability table will be used

throughout the section to illustrate the effectiveness of the different types of local structures and

their basic principle.

6.1.3 Default Tables

A default table lists several probabilities with the corresponding instances of the variables in the

condition first, and sets the remaining probabilities to a default value. The default value is com-

puted as an average of all the covered conditional probabilities weighted by the probabilities of the

conditional parts of those probabilities. If a particular conditional probability is listed, its value is

determined from the corresponding entry in the table. If the conditional probability is not listed,

its value is assumed to be equal to the default value.

144

X2 X3 X4 p(X1 = 0|X2,X3,X4)
0 0 0 0.75
0 0 1 0.25
0 1 0 0.25
0 1 1 0.25

default 0.20

Table 6.2: A default table reducing the number of conditional probabilities from Table 6.1 by 3
without compromising the accuracy of the model.

X2 X3 X4 p(X1 = 0|X2,X3,X4)
0 0 0 0.75

default 0.23

Table 6.3: A default table reducing the number of conditional probabilities by 6. In this case, the
conditional probabilities of 0.20 and 0.25 are both stored in the default row of the table, yielding
a different assignment of the probabilities than the one observed in the data. However, the default
table may still lead to increased likelihood of the overall model.

There are two intuitive ways to compress the conditional probability table from Table 6.1 using

default tables. The first alternative is to list the first four probabilities and set the remaining

probabilities to the default value of 0.20. The second alternative is to list the first probability and

the last four ones first, and set the remaining probabilities to the default value of 0.25. In the first

case, more entries in the table are eliminated and therefore higher compression is achieved. The

resulting default table is shown in Table 6.2.

The default table presented above reduces the number of stored probabilities without losing any

information at all. However, it is possible to group the probabilities that are not equal but that

are very similar. For example, the conditional probability table shown in Table 6.1 can be further

reduced as shown in Table 6.3 by merging the probabilities 0.20 and 0.25 into a single default value.

Although such an assignment results in that the probabilities encoded in the network are different

than those observed in the data, the assignment might still lead to an increase in the likelihood

(quality) of the model1. In that case, the introduced inaccuracy in the probabilities pays off in the

end.

There is an important difference between the conditional probability tables and the default
1Recall that both the Bayesian metrics and the MDL metrics include some form of penalty for model complexity.

In both cases, the penalty relates to the number of parameters of the model in some way. Therefore, despite that the
model that merges unequal probabilities together will reflect the actual distribution of the data less accurately, the
complexity-penalty term can decrease by a higher amount.

145

tables. In a conditional probability table, it is sufficient to list 2k numbers to encode the conditional

probabilities of a variable with k binary variables in the condition. Assuming a fixed ordering of the

probabilities, it is sufficient to look at the position of each number to find out which probability the

number actually represents. For example, Table 6.1 orders the probabilities alphabetically according

to the values of the variables in the condition; the first number in this ordering represents the

probability with the condition 000, the second number in this ordering represents the probability

with the condition 001, and so forth. On the other hand, the default table must specify the

instance that the listed probability corresponds to, because it is not known in advance which of

the probabilities are specified and which ones are not. Clearly, there are several tricks to make the

representation more efficient, but it is beyond the scope of this section to discuss these.

The limitations of default tables are clear; a default table is capable of encoding the similarities

among the members of only one subset of probabilities. That is why one must choose whether

to group the probabilities 0.20 or 0.25, but it is impossible to group all the instances with the

probability 0.20 and, at the same time, group all the instances with the probability 0.25. Next,

we describe how more sophisticated structures—such as decision trees and decision graphs—can be

used to exploit more regularities in the set of conditional probabilities for the considered variable.

6.1.4 Decision Trees and Graphs

A decision tree is a directed acyclic graph where each node except for the root has exactly one

parent; the root has no parents. The internal nodes (all nodes except for the leaves) of the tree are

labeled by a variable (feature). When a node is labeled by a variable v, we say that the node is a

split on v. Edges from a split on v are labeled by non-empty distinct exhaustive subsets of possible

values of v.

Given an assignment of all the variables, a traversal of the decision tree starts in the root. On

each split on v, the traversal continues to the child along the edge containing the current value of

v. For each assignment of the involved variables, there is only one possible way of traversing the

tree to a leaf, because the edges coming from each split must be labeled by distinct subsets of the

values.

Each leaf of a decision tree contains a quantity or information of interest associated with all the

146

X2

X3

X4 0.25

0.20

0.250.75

0

0

0 1

1

1

(a) Decision tree.

X2

X3

X4

0.20

0.75

0

0

0 1

0.25

1

1

(b) Decision graph.

Figure 6.1: The decision tree and the decision graph that encode the probabilities shown in Ta-
ble 6.1.

instances that end up the traversal of the tree in that leaf. To use decision trees for representing

the conditional probabilities of a particular variable, each leaf stores the conditional probabilities

of the variable given that the variables contained in the path from the root to the leaf are fixed

according to the path.

Let us return to the example from Table 6.1 discussed in the context of default tables. To

represent the full conditional distribution, it is sufficient to construct the tree shown in Figure 6.1(a).

The decision tree reduces the number of conditional probabilities that must be stored from 8 to

only 4.

In some cases, it might be useful to store less probabilities at the expense of the accuracy of

the resulting model. Analogously to the case with default tables, the reduction of the number of

parameters of the model might result in increasing the overall quality of the model.

Decision Graphs

Note that in the decision tree from Figure 6.1(a), there are two leaves that store the same conditional

probability of 0.25. If the two leaves could be merged into a single one, the number of required

probabilities could be further reduced by 1. However, after merging the two leaves, the new node

would have two parents instead of one; consequently, the resulting graph would not be a tree. In

147

spite of that, the resulting structure would be still useful in the same way.

Decision graphs extend decision trees by allowing each node to have multiple parents and there-

fore can find a use for more regularities in the conditional probabilities associated with the Bayesian

network. For example, the decision graph encoding the probabilities from the aforementioned exam-

ple is shown in Figure 6.1(b). Using a decision graph reduces the number of conditional probabilities

that must be stored by more than a half (only 3 out of 8 probabilities must be stored).

Parsing a decision graph is analogous to parsing a decision tree. For each instance, there is

exactly one way of traversing the graph down to a particular leaf, which stores the corresponding

probability. Unlike decision trees, decision graphs allow encoding any equality constraints on the

conditional probabilities. In other words, there can be as few leaves in the decision graph as there

are different conditional probabilities. By introducing additional equality constraints, the overall

likelihood of the model can be further increased.

Bayesian Network with Decision Graphs

A Bayesian network with decision graphs contains one decision graph for each variable. The decision

graph for Xi is denoted by Gi. Each decision graph encodes the conditional probabilities for the

corresponding variable.

Note that although the decision graphs encode the conditional probabilities for a particular

network structure, the network structure can be constructed from the decision graphs themselves.

The set of parents of each variable is the set of variables on which there exists a split in the

decision graph corresponding to the considered variable. As long as the decision graphs contain

valid probabilities and there are no cycles in the corresponding Bayesian network, the network is

fully specified by the set of decision graphs, one graph per variable.

As an example, consider the decision graph shown in Figure 6.1(b), which stores the conditional

probabilities of X1 for the considered Bayesian network. The decision graph reveals that the

probability distribution of X1 is affected by the variables X2, X3, and X4, and it is independent

of any other variable. Therefore, X2, X3, and X4 are the parents of X1 in the underlying network

structure.

There are three major advantages of using decision graphs in learning Bayesian networks:

148

(1) Parameter compression. Fewer conditional probabilities can be used to represent the model.

This saves memory and time for both the model construction as well as the utilization of the

constructed model.

(2) More complex models. Decision graphs allow learning a more complex class of models.

Although all the models can be represented by the full joint probability distribution repre-

sented by a fully connected Bayesian network, the full joint probability distribution requires

an exponential number of parameters. Decision graphs reduce that number of parameters so

that learning the model becomes tractable even when there are no conditional independencies

in the model.

(3) Better learning. The construction of a Bayesian network with decision graphs can proceed

in smaller and more specific steps. That often results in better models with respect to their

likelihood (Chickering, Heckerman, & Meek, 1997; Friedman & Goldszmidt, 1999).

Using decision graphs improves the utility of Bayesian networks, but the semantics of Bayesian

networks with decision graphs remains the same. Therefore, one could expect that although the

expressiveness of Bayesian networks will improve by using decision graphs, the methods for mea-

suring the quality of candidate models and the methods for constructing a model given data should

not change much. Indeed, the scoring metrics for measuring the quality of each candidate model

as well as the greedy algorithm for constructing the model can be adapted to the new situation in

a straightforward manner.

In the following, we first describe the changes that must be incorporated into the two metrics

presented earlier in this thesis—the Bayesian-Dirichlet metric (BD) and the Bayesian information

criterion (BIC). Subsequently, we define the split and merge operators, which can be used to con-

struct decision graphs. Finally, we present an algorithm for the construction of Bayesian networks

with decision graphs. The presented algorithm exploits the new representation of Bayesian networks

by directly manipulating decision graphs instead of updating the decision graphs as a consequence

of changing the network itself.

149

Bayesian Score for Networks with Decision Graphs

Chickering, Heckerman, and Meek (1997) derived the Bayesian score for Bayesian networks with

decision graphs. The resulting metric can be computed analogously to the case with traditional

Bayesian networks, yielding

p(D|B) =
n−1∏
i=0

∏
l∈Li

Γ(m′
i(l))

Γ(mi(l) + m′
i(l))

∏
xi

Γ(mi(xi, l) + m′
i(xi, l))

Γ(m′
i(xi, l))

, (6.2)

where Li is the set of leaves in the decision graph Gi for Xi; mi(l) is the number of instances in D

which end up the traversal through the graph Gi in the leaf l; mi(xi, l) is the number of instances

that have Xi = xi and end up the traversal of the graph Gi in the leaf l; m′
i(l) represents the prior

knowledge about the value of mi(i, l); and m′
i(xi, l) represents the prior knowledge about the value

of mi(xi, l). Again, the uninformative prior m′
i(xi, l) = 1 is used in the K2 variant of the BD metric

for Bayesian networks with decision graphs.

As mentioned earlier in the thesis, the Bayesian metrics tend to be more sensitive to the noise

in data and, in practice, they often lead to overly complex models. However, Bayesian metrics

allow the use of prior information, which can bias the metric to favor simpler models and eliminate

the aforementioned problem. Although in traditional Bayesian networks we have not succeeded in

finding a robust prior that would work well in general, in Bayesian networks with decision graphs

we have resolved this problem. This robust prior is described next.

To adjust the prior probability of each network according to its complexity, the description

length of the parameters required by the network is first computed. One frequency in the data

set of size N can be encoded using log2 N bits; however, only half of the bits suffice to encode the

frequencies with a sufficient accuracy (Friedman & Yakhini, 1996). Therefore, to encode all the

parameters, 0.5(
∑

i |Li|) log2 N bits are needed, where
∑

i |Li| is the total number of leaves in all

the decision graphs. To favor simpler networks to the more complex ones, the prior probability

of a network can decrease exponentially with the description length of the set of parameters they

require (Friedman & Goldszmidt, 1999). Thus,

p(B) = c2−0.5(
∑

i |Li|) log2 N , (6.3)

150

where c is a normalization constant required for the prior probabilities of all the network structures

to sum to 1. The value of a normalization constant does not affect the result, because we are

interested in only relative quality of networks and not the absolute value of their marginal likelihood.

From our experience, the above prior is sufficient to bias the model construction to networks

with less parameters and avoid superfluously complex network structures. For local structures in

Bayesian networks, the K2 score with the above prior actually seems to outperform the BIC metric

in its robustness.

A similar prior was proposed by Chickering, Heckerman, and Meek (1997), who decrease the

prior probability of each network exponentially with the number of parameters of the network:

p(B) = cκ
∑

i |Li|,

where κ ∈ (0, 1). Usually, κ is rather small, for instance, κ = 0.1.

BIC for Bayesian Networks with Decision Graphs

The Bayesian information criterion (BIC) for Bayesian networks with decision graphs can also be

computed analogously to the case with traditional Bayesian networks (see Equation 3.4). The

difference is that instead of summing over the instances of each variable and its parents, the sums

must go over all the leaves in the tree. Additionally, the number of parameters is not anymore

proportional to the number of instances of the parents of all the variables, but it is equal to the

number of leaves. Thus,

BIC(B) =
n∑

i=1

⎛
⎝N

∑
l∈Li

mi(xi, l) log2
mi(xi, l)
mi(l)

− |Li| log2(N)
2

⎞
⎠ . (6.4)

Decision Graph Construction: Operators on Decision Graphs

To construct a decision graph for binary variables, two operators are sufficient. The first operator

is a split, which splits a leaf on some variable and creates two new children of the leaf, connecting

each of them with an edge associated with one possible value of this variable (0 or 1). The second

operator is a merge, which merges two leaves into a single one and introduces a new equality

151

X2

X3

X2

X3

X2

X3

X3Split on

X4

X2

0.20

0 1

0.61

X2Split on

0.37

0.20

0

0 1

0.25

1

0.68

X4

0.20

0.75

0

0

0 1

0.25

1

1

0.25 X4

0.20

0.75

0

0

0 1

0.25

1

1

Split on

Merge

Figure 6.2: The merge and split operators for decision graphs. The decision graph shown earlier in
the text is constructed from an empty decision graph consisting of one leaf by a sequence of splits
and merges.

constraint on the parameter set.

Figure 6.2 shows the operators that can be used to construct the decision graph shown in

Figure 6.1(b) from an empty decision graph that contains only the marginal probability of the

considered variable without any condition. A sequence of three splits and one merge leads to the

resulting graph shown earlier in this chapter.

For the variables that can obtain more than two values, two versions of the split operator can

be considered: (1) a complete split, which creates one child for each possible value of the variable

(as above), and (2) a binary split, which creates one child corresponding to one particular value of

the variable and another child for all the remaining values. These two operators are equivalent for

binary variables. Of course, other alternatives can also be considered.

Constructing Bayesian Networks with Decision Graphs

The greedy algorithm for constructing the Bayesian networks with decision graphs described in this

section differs from the greedy algorithm for constructing traditional Bayesian networks presented

in Section 3.3.2. The difference is that the algorithm for constructing the networks with decision

graphs does not directly manipulate the network but it modifies the decision graphs corresponding

to the variables in the network. The network B is initialized to an empty network that contains no

edges. The decision graph Gi for each variable Xi is initialized to a single-leaf graph, containing

152

A greedy algorithm for network construction using decision graphs

(1) Initialize a decision graph Gi for each node Xi to a graph containing only a single leaf.

(2) Initialize the network B into an empty network.

(3) Choose the best split or merge that does not result in a cycle in B.

(4) If the best operator does not improve the score, finish.

(5) Execute the chosen operator.

(6) If the operator was a split, add the corresponding edge into B.

(7) Go to (3).

Figure 6.3: The pseudo-code of the greedy algorithm for constructing the Bayesian network with
decision graphs.

only probabilities p(Xi) as shown earlier in Figure 6.2.

Each iteration, all operators (e.g., all possible merges and splits) that can be performed on all

decision graphs Gi are examined. The operator that improves the score the most is performed on

the corresponding decision graph. The operators that can be performed include (1) splitting a leaf

of some decision graph on a variable that was not encountered on the path from the root to the

leaf and (2) merging two leaves into a single leaf.

When performing a split operator, no cycles must be introduced to the network B. To guarantee

that the final network remains acyclic, the network B can be updated after each split. After splitting

a leaf of the graph Gi on Xj, an edge Xj → Xi is added to the network B. If a cycle would be

introduced by the new edge, the split must not be allowed. The above restriction could be alleviated.

The use of decision trees allows Bayesian multinets (Geiger & Heckerman, 1996) with one or more

distinguished variables. However, for the sake of computational efficiency and the simplicity of the

implementation, we do not take this under consideration.

It is important to notice the difference between the algorithm that directly modifies the network

and the one that modifies the decision graphs. Adding an edge into a Bayesian network and using a

full conditional probability table to store the required probabilities corresponds to splitting all leaves

of the decision graph corresponding to the terminal node of the edge on the variable corresponding

153

to the initial node of the edge. However, by modifying only the decision graph, finer steps can be

performed and that might improve the quality of the resulting model.

The following section focuses on the last key to hierarchy success—the preservation of alternative

solutions.

6.2 Preservation of Alternative Candidate Solutions

This section focuses on methods that attempt to maintain useful diversity in genetic and evolution-

ary algorithms. The preservation of alternatives is provided by encouraging local competition for

the space in the population in some way; similar solutions compete with each other, whereas dis-

similar solutions compete only rarely or never. Using an analogy from ecological systems, solutions

that are similar share the same niche, and methods for preserving diversity are thus often referred

to as niching methods.

The purpose of this section is to propose a niching method that will ensure the third key

to hierarchy success—the preservation of alternative solutions—in hierarchical BOA. The section

starts with an overview of niching methods. Methods that have been successfully applied in the

domain of traditional GAs are discussed in the context of BOA. One of the methods is then adopted

to ensure the preservation of alternative candidate solutions in hierarchical BOA.

6.2.1 Background of Niching

Niching methods localize competition in genetic and evolutionary algorithms so that different groups

of candidate solutions compete in different niches. Consequently, diversity can be maintained for a

long time. The purpose of niching in genetic and evolutionary optimization is twofold:

(1) Generate multiple solutions. In some real-world applications it is important to find multiple

solutions and let the expert or experiment decide which of the solutions is the best after all.

This is usually the case when the fitness function does not fully determine which solution is the

best in practice but only focuses on several aspects of solution quality, or when for the sake of

efficiency instead of using a complete fitness function one uses only its approximation that is

more computationally efficient.

154

(2) Preserve alternative solutions. The reason for preserving multiple alternative solutions is

that in some difficult problems one cannot clearly determine which alternative solutions are

really on the right track until the optimization proceeds for a number of generations. Without

effective niching, the population is subject to genetic drift (random effects, see Section 4.2.3)

which may destroy some alternatives before it becomes clear whether or not they are the ones

we are looking for.

There are three fundamentally different approaches to niching:

(1) crowding,

(2) fitness sharing, and

(3) spatial separation.

Crowding modifies the selection procedure to localize competition by taking into account both

the fitness as well as the genotype (solution string) or phenotype (semantics of the solution string)

of competing candidate solutions (Cavicchio, 1970; De Jong, 1975; Harik, 1994; Mahfoud, 1992;

Mengshoel & Goldberg, 1999). Fitness sharing modifies the fitness landscape before selection so

that the number of solutions corresponding to each niche is proportional to the fitness of that

niche (Goldberg & Richardson, 1987; Deb & Goldberg, 1989; Horn, 1993). Spatial separation

isolates several subpopulations of candidate solutions instead of keeping the entire population in

one location (Grosso, 1985; Cohoon, Hegde, Martin, & Richards, 1987; Gorges-Schleuter, 1989;

Collins & Jefferson, 1991; Davidor, 1991; Mühlenbein, 1991). Candidate solutions can migrate

between different locations (islands or demes) at certain intervals and allow the population at

each location develop in isolation. Since competition among candidate solutions in each island is

separated from other islands, solutions in different islands can differ significantly and diversity can

be preserved for a long time. However, spatial separation does not force niching, it only allows

niching to take place. That is why spatial separation is sometimes omitted in the context of niching.

Some related work studies the preservation of diversity from a different point of view. The

primary goal of these techniques is not the preservation of multiple solutions or alternative search

regions, but the avoidance of premature convergence. Mauldin (1984) proposed one such approach,

155

which injects randomly generated candidate solutions into the current population at certain in-

tervals. On the other hand, Baker (1985) proposed a method that controls selection to prevent

premature convergence. However, the avoidance of premature convergence is not the primary

purpose of using niching in our work (although the preservation of alternatives and premature

convergence are related). Various techniques for niching were also proposed in the area of multi-

objective optimization (Schaffer, 1984; Horn & Nafpliotis, 1993; Fonseca & Fleming, 1993; Deb,

2001), but these methods are not applicable to single-criterion optimization.

The section continues with a brief overview of existing techniques in the three classes of niching

methods: (1) crowding, (2) fitness-sharing, and (3) spatial separation models. Subsequently, the

section describes restricted tournament replacement used in hierarchical BOA.

Niching by Crowding

All niching methods localize competition in some way. This section reviews methods that localize

competition by modifying selection and replacement strategies.

Preselection (Cavicchio, 1970), deterministic crowding (Mahfoud, 1992), probabilistic crowd-

ing (Mengshoel & Goldberg, 1999), and the gene invariant genetic algorithm (GIGA) (Culberson,

1992) are applicable to GAs with two-parent recombination methods. In preselection (Cavicchio,

1970), one candidate solution is created by crossing over two parent solutions, and the new so-

lution replaces the inferior parent. Preselection encourages competition among similar candidate

solutions, because an offspring and its parents usually share many similarities. Deterministic crowd-

ing (Mahfoud, 1992) pairs each offspring with a more similar parent and the solutions within each

pair compete. The offspring replaces the parent if it is better; otherwise the offspring is discarded.

Probabilistic crowding (Mengshoel & Goldberg, 1999) is a probabilistic extension of Mahfoud’s

deterministic crowding. In probabilistic crowding, the winner of the parent-offspring tournament

is chosen according to the probabilities proportional to the fitness of the competitors. The gene

invariant genetic algorithm (GIGA) (Culberson, 1992) starts by selecting two solutions with fit-

ness proportionate selection. After crossing over the selected solutions, the offspring replace their

parents. In this fashion, the proportion of 1s and 0s in each position is preserved (gene invariance).

In crowding (De Jong, 1975), for each new candidate solution a subset of the original population

156

is first selected. The new solution then replaces the most similar candidate solution in the selected

subset. Earlier in the run only little will change compared to random replacement. However, as

the run continues, candidate solutions will create groups of similar solutions, which compete for

space with other members of the same group. Crowding was later used by Goldberg (1983) for a

pipeline design by learning classifier systems.

Harik (1994) proposed restricted tournament selection (RTS) as an extension of De Jong’s

crowding. Restricted tournament selection selects two parents at random with uniform distribution.

Two candidate solutions are then generated by applying crossover to the two selected parents. For

each new candidate solution, a subset of the original population is first selected as in crowding.

However, instead of automatically replacing the closest solution from the selected subset, the two

solutions compete and the one that has a higher fitness wins. In this fashion, the selection step

is performed by elitist replacement with a flavor similar to that of crowding. No extra selection

operator is required. Harik showed that RTS performed well on a number of multimodal problems

and that it was able to locate all optima even on the functions that are highly multimodal and

difficult to solve. We will support Harik’s argument by a similar experiment presented at the end

of this chapter.

A number of techniques that restrict mating in some way to promote niching were proposed.

Hollstein (1971) required similar candidate solutions to mate as long as their fitness improved.

When the trend changes and the quality of the “family” decreases, crossbreeding across the fami-

lies is allowed. Booker (1982) discussed the need for restricted mating to prevent the formation of

lethals. Perry (1984) introduced multiple contexts in which the fitness function varied according to

externally specified partial solutions that defined species. Candidate solutions could migrate be-

tween different contexts. The technique of Perry is mainly interesting for its biological background.

In the context of discrete PMBGAs, Pelikan and Goldberg (2000a) divided the population of

selected parents in each generation into a specified number of clusters. A mixture of Gaussians was

used to separate candidate solutions in the selected population by using k-means clustering. Each

cluster was processed separately and the offspring of each cluster was given a fraction of the new

population of the size proportional to their average fitness.

De Jong’s crowding and Harik’s restricted tournament selection are two most straightforward

157

approaches to incorporating niching into BOA. Both methods can be incorporated without affecting

the model building or its utilization in BOA. However, it becomes difficult or impossible to use other

crowding methods, such as Mahfoud’s deterministic crowding, Mengshoel’s probabilistic crowding,

and Culberson’s GIGA.

Niching by Fitness Sharing

The basic idea of fitness sharing is to create a number of artificial niches and give each niche a

number of copies proportional to the quality of solutions in the niche. Although the motivation

for fitness sharing dates back to Holland (1975), the first practical fitness-sharing method was de-

veloped by Goldberg and Richardson (1987). Promising solutions are selected with the probability

proportional to their fitness. However, before selection, the fitness of each candidate solution is

modified according to

f ′(X) =
f(X)∑

Y sh(d(X,Y))
,

where
∑

Y runs over all candidate solutions Y in the current population; d(X,Y) is the distance

between solutions X and Y ; and sh(d) is the sharing function. The sharing function defines the

degree of similarity of the two solutions that are located at distance d from each other as follows:

sh(d) =

⎧⎪⎪⎨
⎪⎪⎩

1− d
σshare

if d < σshare

0 otherwise
,

where σshare is the sharing threshold that defines the maximum distance between two candidate

solutions that share a niche. After updating the fitness as described above, the number of copies

of solutions in each niche is proportional to the average fitness of the niche.

For a successful application of fitness sharing, it is necessary to determine a proper value of the

sharing threshold σshare. Deb and Goldberg (1989) calculated the value of σshare from the desired

number of niches by dividing the problem domain (set of all candidate solutions) into a specified

number of equally sized hyperspheres.

One of the drawbacks of fitness sharing is that it experiences difficulty with maintaining optima

that are close to each other or those that are distributed irregularly. On the other hand, fitness

158

sharing is capable of preserving all the optima for long periods of time (see for example the study

of Horn (1993) who analyzed the stability of sharing for the case with two niches). Furthermore,

unlike the approaches based on crowding, the fitness proportionate selection is capable of main-

taining the size of each niche so that the number of copies of solutions in each niche is proportional

to the average fitness of that niche.

Fitness sharing directly modifies the fitness before selection takes place. Consequently, the

frequencies of partial solutions after selection are “disturbed” by sharing. Since those frequencies

are the only input of BOA regarding the nonlinearities in the problem, BOA’s capability of building

a good model might suffer. That is why fitness sharing does not seem to be an appropriate approach

to niching in BOA.

Niching by Spatial Separation

There are two reasons why spatial separation should be desirable in genetic and evolutionary com-

putation: (1) In nature the populations are actually divided into a number of subpopulations that

(genetically) interact only rarely or do not interact at all. (2) Separating a number of subpopu-

lations allows for an effective parallel implementation and is therefore interesting from the point

of view of computational efficiency. This section reviews and discusses niching methods based on

spatial separation.

Spatial separation localizes competition by introducing a sort of geographical location of each

candidate solution. Unlike in fitness sharing, in spatial separation the location of each solution

does not depend on its genotype (the representation of the solution) or phenotype (the semantics

of the solution). Amount of information exchange between the groups of candidate solutions from

different locations is controlled by a specific strategy, which might depend on the distance or the

relationship between the locations.

Much work in spatial separation was inspired by the shifting balance theory (Wright, 1968)

and the theory of punctuated equilibria (Eldredge & Gould, 1972). One approach is to divide the

population into a number of subpopulations. Each subpopulation evolves in its own “island” and

candidate solutions migrate between the islands at a certain rate. In this way, genetic material

(partial solutions) is exchanged within each of the subpopulations often while its flow to other

159

subpopulations is reduced. This approach was studied by Grosso (1985), inspired mainly by the

theory of Wright, and by Cohoon, Hegde, Martin, and Richards (1987), whose work is primarily

inspired by the theory of Eldredge and Gould. Another approach introduces some kind of distance

metric in the population and forces local competition and mating. This approach was studied

by Gorges-Schleuter (1989), Collins and Jefferson (1991), Davidor (1991), Mühlenbein (1991), and

others.

The primary drawback of spatial separation is that there is no direct mechanism that forces

niching; instead, spatial separation allows for niching, because different islands can converge to

different regions of the search space. Therefore, while spatial separation is a great approach for

using multiprocessor architectures to process large populations in parallel, it doesn’t seem to be a

good approach for ensuring that useful diversity is maintained.

There are several additional problems with using spatial separation in BOA. Spatial separation

requires isolated processing of a number of subpopulations. Although dividing the population might

be beneficial for parallelization, it negatively affects the performance of BOA on single-processor

machines, because the overall number of candidate solutions must be much larger to ensure that

each subpopulation represents a large enough sample of promising solutions to find a good model.

Furthermore, there must be many islands to ensure that useful diversity is maintained and (due

to the independence of spatial separation on candidate solutions) one can never be sure that this

indeed takes place.

6.2.2 The Method of Choice: Restricted Tournament Replacement (RTR)

The overview of niching methods discussed a number of methods that have been designed to ensure

that useful diversity is maintained. Each niching method described in the above overview can be

advantageous in some situations. So what niching method should be used in hierarchical BOA?

As follows from the discussion of each method, restricted tournament selection of Harik (1994)

and crowding of De Jong (1975) seem to be the best choices. Hierarchical BOA uses restricted tour-

nament selection, because this niching method introduces an additional source of selection pressure

that has proven advantageous according to a number of empirical results. However, since restricted

tournaments are used for replacement in a generational GA (as opposed to the steady-state GA) and

160

the primary selection pressure comes from selection, we call the used method restricted tournament

replacement (RTR).

The following section describes hierarchical BOA and discusses how hierarchical BOA differs

from the original BOA described in Chapter 3.

6.3 Hierarchical BOA

Above we discussed the important mechanisms that must be incorporated into BOA to extend its

applicability to difficult hierarchical problems. The purpose of this section is to describe hierarchical

BOA (hBOA) (Pelikan & Goldberg, 2001) and discuss the ways in which hierarchical BOA differs

from the original BOA.

Recall that in BOA, the population is updated for a number of iterations (generations), each

consisting of four steps: (1) selection, (2) model building, (3) model sampling, and (4) replacement.

Each generation of hBOA also consists of the above four steps. However, instead of using traditional

Bayesian networks, hBOA uses Bayesian networks with decision graphs to ensure the first two keys

to hierarchy success—a proper decomposition and chunking. Therefore, the steps (2) and (3) of

the basic BOA must be modified to incorporate the decision graphs into the learning and sampling

of Bayesian networks.

The second modification consists of using RTR as a replacement strategy. For each new candi-

date solution generated by sampling the learned model in step (3), a random subset of candidate

solutions is first selected from the original population. The size of the selected subsets is fixed to

some constant, called the window size, denoted by w. The new solution is then compared to each

candidate solution in the selected subset and the fitness of the most similar candidate solution of

the subset is compared to that of the new solution. If the new solution is better, it replaces the

most similar solution of the subset; otherwise, the new solution is discarded.

From our experience, a good heuristic is to set the window size to the number of bits in the

problem:

w = n. (6.5)

The reason for setting w = n is that the number of niches nn that can be maintained in a population

161

Hierarchical Bayesian Optimization Algorithm (hBOA)

(1) set t← 0

randomly generate initial population P (0)

(2) select a set of promising strings S(t) from P (t)

(3) build the network B by constructing decision graphs Gi encoding cond. probabilities

(see Figure 6.3)

(4) generate a set of new strings O(t) according to the joint distribution encoded by B with
dec. graphs Gi

(5) create a new population P (t + 1) using RTR to incorporate each member of O(t) into
P (t).

set t← t + 1

(6) if the termination criteria are not met, go to (2)

Figure 6.4: The pseudo-code of the hierarchical Bayesian optimization algorithm.

of candidate solutions is equal to some fraction of the population size: nn = O(N). RTR with the

window size w can maintain the number of niches that is equal to some fraction of the window

size: nn = O(w). Since in BOA, the population is expected to grow approximately linearly with

the size of the problem, N = O(n), to maximize the number of niches that can be maintained by

BOA without affecting the population sizing, w = O(n).

The pseudo-code of hBOA is shown in Figure 6.4.

6.4 Experiments

In the previous chapter we have promised that if one incorporates chunking and niching into BOA,

the resulting method would be capable of scalable optimization of difficult hierarchical problems.

We have also designed a class of challenging hierarchical problems—hierarchical traps—that can

be used to test whether an algorithm can solve hierarchical problems in a scalable manner.

The purpose of this section is to present experimental results of applying hierarchical BOA

presented in the previous section to the challenging hierarchical problems presented in Chapter 5.

162

Additionally, the algorithm is tested on the HIFF function (Watson, Hornby, & Pollack, 1998) and

the folded trap function. In all cases, hBOA passes the test and proves to be a scalable hierarchical

optimizer.

The section starts by introducing the experimental methodology. Empirical results are then

presented and discussed.

6.4.1 Methodology

For each problem instance, 30 independent runs are performed and hierarchical BOA is required

to find the optimum in all the 30 runs. The performance of hierarchical BOA is measured by the

average number of evaluations until the optimum is found. The population size for each problem

instance is determined empirically as the minimal population size for the algorithm to find the

optimum in all the runs.

Binary tournament selection with replacement is used in all experiments and the window size

for RTR is set to the number of bits in a problem. Bayesian networks with decision graphs are

used and K2 metric with the term penalizing complex models is used to measure the quality of

each candidate model.

6.4.2 Results

Figure 6.5 shows the performance of hierarchical BOA on the two hierarchical traps defined in

Section 5.3.5. The number of bits in the first hierarchical trap ranged from n = 27 to n = 729; for

the largest problem only 7 runs were performed due to the increased computational requirements.

The number of bits in the second hierarchical trap ranged from n = 27 to n = 243. In both

cases, the number of evaluations was approximated by a function of the form O(nk log n), where

the parameters k was set to fit the empirical results best. In both cases, the overall number of

fitness evaluations grows subquadratically with the size of the problem.

Similar results were obtained on the HIFF function of Watson, Hornby, and Pollack (1998).

The size of HIFF ranged from n = 16 bits to n = 512 bits. The number of fitness evaluations was

approximated as above. Again, the overall number of fitness evaluations grows subquadratically.

An additional experiment was performed on the folded trap function to verify the effects of

163

27 81 243 729

10
4

10
5

10
6

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns

Experiment

O(n1.63 log(n))

(a) Hierarchical trap I.

27 81 243

10
4

10
5

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns

Experiment

O(n1.52 log(n))

(b) Hierarchical trap II.

Figure 6.5: The number of fitness evaluations until hierarchical BOA has found the optimum on
the two hierarchical traps. The problem sizes range from n = 27 bits to n = 729 bits for the first
trap, and n = 27 to n = 243 for the second trap. In both cases, the overall number of fitness
evaluations grows subquadratically with the size of the problem.

niching on the preservation of alternative solutions. The folded trap of order 6 of size n = 30 bits

(5 building blocks) was used as a test function. The tested function provides an interesting test;

there are 32 global optima and 3, 200, 000 local optima. With the population of size N = 1, 500,

the algorithm can only afford to maintain all the global optima. Figure 6.7 shows that hierarchical

BOA was capable of discovering all the global optima after about 43 generations. The global optima

were further propagated and maintained until the end of the run of 110 generations. An interesting

observation is that although all the optima are multiply represented at the end of the run, the

number of copies of the optima differs significantly. The reason for that behavior is that unlike

fitness sharing, restricted tournament replacement does not require that the size of each niche be

proportional to the average fitness in that niche.

6.5 Scalability of hBOA on Hierarchical Problems

The results presented in the above section indicated that hierarchical BOA is capable of solving the

difficult hierarchical problems in subquadratic time. How does this relate to the BOA scalability

theory presented in Chapter 4?

164

16 32 64 128 256 512

10
3

10
4

10
5

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns

Experiment

O(n1.62 log(n))

Figure 6.6: The number of fitness evaluations until hierarchical BOA has found the optimum on
the hierarchical if-and-only-if (HIFF). The problem sizes range from n = 16 bits to n = 512 bits.
The overall number of fitness evaluations grows subquadratically with the size of the problem.

The convergence of hierarchical BOA on the hierarchical problems proceeds sequentially from

the bottom to the top level. On each level, the correct building blocks on that level must be

discovered and their competitors must be eliminated. The number of evaluations required for

hierarchical BOA to discover the correct building blocks on each level can be upper-bounded by

the overall number of fitness evaluations required to solve the problem on the current level only.

Using the BOA scalability theory, on each level l the number of evaluations can be upper bounded

by O(n1.55
l), where nl is the number of subproblems from the lower level, which serve as the

basic building blocks (or bits) for the current level. For example, in the hierarchical trap, nl =

n/3l−1. The number of levels is proportional to the logarithm of the problem size on all the tested

problems. In particular, hierarchical traps contain log3 n levels, and HIFF contains log2 n levels.

For hierarchical traps, the overall number of evaluations can be therefore bounded by

log3 n∑
l=1

O

([n

3l−1

]1.55
)

= O(n1.55 log n). (6.6)

For HIFF, the same bound O(n1.55 log n) can be derived in a straightforward manner. Therefore,

in both cases, the overall time to convergence is approximately equal to the number of levels times

the time spent on a single-level problem of the same size. This result is confirmed by the empirical

results.

165

0 50 100 150
0

10

20

30

40

50

60

70

80

90

100

Generation

N
um

be
r

of
 C

op
ie

s

Figure 6.7: The number of copies of different global optima of the bipolar function. There are 32
optima in this function and all 32 are multiply represented at the end of the run.

If the number of levels grows faster than a logarithm of the problem size, the resulting bound is

Ehboa = O(n1.55L(n)), (6.7)

where L(n) denotes the number of levels in the problem of size n. The bound given by the last

equation could, however, change in some cases. Here we assumed that only two optima for each

partition of the problem are preserved on each level to form the two building blocks that are to

be juxtaposed on the next level. If the number of optima is not constant, the overall number

of evaluations can be expected to increase due to the increased population size and number of

generations. Similarly, if the size of the partitions on the lowest level grows with the size of the

problem, the population size will have to increase according to the BOA population sizing.

6.6 How Would Other Methods Scale Up?

We performed a number of experiments with other search methods, including the traditional GAs,

the one- and two-bit deterministic hill climbers, the stochastic hill climber, and the simulated an-

nealing (Kirkpatrick, Gelatt, & Vecchi, 1983). None of the tested algorithms was capable of solving

hierarchical traps except for toy instances of at most n = 27 bits. That is why it was impossible

to determine whether the growth of computational complexity of local search was exponential;

166

nonetheless, this section argues that exponential complexity can be expected using traditional per-

turbation operators within local search. Additionally, the section discusses the performance of

traditional GAs briefly.

The reason for the poor performance of GAs with traditional recombination and no mutation

is that without using an appropriate decomposition, the problem on any level of hierarchical traps

requires exponentially large populations (Thierens & Goldberg, 1993). Therefore, even without

hierarchy, GAs with traditional crossover yield intractable search. The following argument suggests

that introducing mutation in GAs will not change the situation in this case (although mutation did

yield polynomial search on composed traps, see sections 2.2.2 and 4.6).

Deterministic hill climbers start with a random string. In each iteration, they flip one or two bits

of the current solution that result in the biggest increase in the fitness. If no more improvement is

possible, the algorithms start over with a random starting point. Performing one- and two-bit flips

is sufficient to discover some of the blocks 111 and 000 on the first level, but it fails in discovering

the partial solutions on the higher levels. The only starting points from where the deterministic

hill climber with one-bit flip is capable of reaching the optimum are in the strings that contain at

most one 0 in each partition of 3 bits in the first-level decomposition. The probability of generating

such a starting point is given by (
1
2

)n
3

,

because there are 4 allowable instances of the 3 bits out of 8 instances total, and there are n/3 such

blocks in the string of length n. For the two-bit flips, any instance of the 3 bits that contains at

most two 0s is allowed, so the probability of generating a good starting point grows as

(
7
8

)n
3

.

Therefore, in both cases, exponential number of restarts must be performed to reach the optimum.

Consequently, the deterministic hill climbers were capable of solving only toy instances of 9 bits

and failed in solving the next bigger problem of size n = 27 even with tens of millions restarts.

The stochastic hill climber with bit-flip mutation also requires exponentially many restarts or

exponentially many steps. The argument can be supported by a Markov chain analysis of the

167

stochastic hill climbing. It can be shown that to flip particular k bits at the same time by bit-flip

mutation, approximately O(nk) trials are required (Mühlenbein, 1992). If there are several such

groups, it is most difficult to flip the last group of k bits and therefore the same complexity can be

expected (Mühlenbein, 1992). From any block of 3 bits, either 000 or 111 can be reached by flipping

at most one bit; therefore, blocks 000 and 111 on the first level can be found in O(n), yielding a

string with half of the blocks equal to 000 and half of the blocks equal to 111. However, to find

blocks 000000000 and 111111111 on the next level, three bits must be flipped at once (because of

the deception of traps) and O(n3) trials are necessary. Continuing up a number of levels, the top

level requires exponentially many trials to find the optimum.

An alternative approach to show the exponential number of trials of the stochastic hill climber

is to bound the number of trials by a polynomial O(nk), and look at the starting points that allow

the optimum to be found in the specified number of trials. This case is similar to the one where

one or two bits are flipped deterministically, because O(nk) trials allows steps of size at most k

flips. That results in an exponential number of restarts or finding a solution only up to a particular

level. The maximum level that can be solved can be expected to be proportional to log k.

The application of a cooling schedule of the simulated annealing relaxes the conditions some-

what; the groups of 3 and more bits do not have to be flipped at once, because the acceptance

of each new solution is not deterministic. With a slow enough cooling schedule, it is possible to

solve a problem of size n = 27; however, the complexity of the simulated annealing changes only

marginally compared to hill climbers and exponentially many trials are needed. To summarize, al-

though hierarchical BOA was capable of solving hierarchical traps of size n = 729, its competitors

could solve a problem of only n = 27 bits (and even for this problem, most competitors failed).

6.7 Summary

This chapter described hierarchical BOA, which extends the original BOA by using local structures

in Bayesian networks for more compact representation and restricted tournament replacement as

a procedure for incorporating new candidate solutions into the original population. Additionally,

the chapter applied hierarchical BOA to challenging hierarchical problems described in chapter 5.

A summary of the key points of this chapter follows:

168

• Hierarchical BOA must extend the original BOA by incorporating (1) chunking and (2) nich-

ing.

• To ensure proper decomposition and chunking, the Bayesian networks with local structures

can be used. The semantics of Bayesian networks remains the same when using local struc-

tures; the difference is that local structures allow a compact representation of model param-

eters (conditional probabilities), so that dependencies of large order can be encoded. Other

models can be used for chunking—such as Huffman networks and Bayesian networks with hid-

den variables—but in any case an efficient representation must be enforced by incorporating

some kind of local structures.

• Decision graphs are one of the most expressive local structures. Using decision graphs in

Bayesian networks allows modifications to the learning algorithm so that the expressivity of

decision graphs can be utilized. In particular, specialized dependencies are manipulated by

splitting and merging the leaves in a decision graph for each variable.

• To ensure a proper preservation of alternative solutions, various niching methods proposed

in genetic and evolutionary computation can be used. Hierarchical BOA uses restricted

tournament replacement (RTR), which is based on restricted tournament selection, but is

used in addition to traditional selection methods in a generational GA.

• Restricted tournament replacement incorporates each newly generated solution by first se-

lecting a random subset of the original population and identifying a solution from this subset

that is most similar to the new solution. The new solution that competes with the identified

most similar solution of the subset; if the new solution outperforms the one in the original

population, it replaces the other solution; otherwise, the new solution is discarded. The size

of the subsets used by RTR is called the window size. A good heuristic is to choose the

window size to be equal to the number of bits in the problem.

• Hierarchical BOA thus combines BOA with local structures and restricted tournament re-

placement.

• Hierarchical BOA is capable of solving challenging hierarchical problems in a subquadratic

169

number of fitness evaluations. In particular, the number of evaluations is approximately

O(n1.63 log n) for the first hierarchical trap, O(n1.52 log n) for the second hierarchical trap,

and O(n1.56 log n) for HIFF.

• The performance of BOA can be supported by a simple extension of BOA scalability theory.

Using the extended theoretical model, the total number of evaluations required by hierarchical

BOA to solve a problem of size n bits defined on L(n) levels (the number of levels is a function

of n) can be bounded by

O(n1.55L(n)).

Since for hierarchical traps and HIFF, the number of levels is proportional to a logarithm of

the problem size, the theoretical model agrees with empirical results.

170

Chapter 7

Hierarchical BOA in the Real World

Earlier we have seen how BOA is capable of solving problems of bounded difficulty and just now

we have designed and implemented hBOA, which is competent on difficult hierarchical problems.

In both cases, special test functions have been used to test the algorithms on the boundary of their

design envelopes. We have argued that if the algorithm is capable of solving artificial single-level

and hierarchical problems of bounded difficulty, it should be applicable to other problems of the

same difficulty or anything easier.

This chapter applies hierarchical BOA to several real-world problems to confirm that decompo-

sition and hierarchical decomposition are useful concepts in approaching real-world problems. Two

problems are considered: (1) two- and three-dimensional Ising spin glass systems with periodic

boundary conditions, and (2) maximum satisfiability of logic formulas (MAXSAT). The chapter

shows how easy it is to apply hierarchical BOA to combinatorial problems and achieve competitive

or better results than problem-specific approaches. Additionally, the chapter relates the actual em-

pirical performance of hierarchical BOA to the theory presented earlier in this thesis and suggests

several ways to improve the performance of the algorithm on difficult real-world problems.

The chapter starts by defining the problem of determining the ground state of a given Ising

spin-glass system. The scalability of hierarchical BOA is first empirically analyzed on a number of

randomly generated instances of two-dimensional Ising spin-glass systems with periodic boundary

conditions. The performance of hierarchical BOA is then improved by combining the algorithm

with local search, and the hybrid is applied to an array of two- and three-dimensional spin glasses.

Section 7.2 defines the maximum satisfiability (MAXSAT) problem and discusses its difficulty. To

improve the performance, hierarchical BOA is again combined with local search. The hybrid is

171

applied to several benchmark instances of MAXSAT and compared to other methods for solving

MAXSAT. Finally, the chapter is summarized.

7.1 Ising Spin Glasses

The task of finding the ground state of a given Ising spin-glass system is a well known problem

of statistical physics. In context of GAs, Ising spin-glass systems are usually studied because of

their interesting properties, such as symmetry and a large number of plateaus (Pelikan, Goldberg, &

Cantú-Paz, 1998; Pelikan & Mühlenbein, 1999; Naudts & Naudts, 1998; Van Hoyweghen, Goldberg,

& Naudts, 2001; Van Hoyweghen, 2001; Mühlenbein, Mahnig, & Rodriguez, 1999).

The physical state of an Ising spin-glass system is defined by (1) a set of spins (σ0, σ1, . . . , σn−1),

where each spin σi can obtain a value from {+1,−1}, and (2) a set of coupling constants Jij relating

pairs of spins σi and σj. A Hamiltonian specifies the energy of the system as

H(σ) = −
n∑

i,j=0

Jijσiσj , (7.1)

where σ = (σ0, σ1, . . . , σn−1) specifies the physical state of spins. The task is to find the state of

spins for given coupling constants Jij so that the energy of the system is minimized. The state

that minimizes the energy is called the ground state of the system. To transform the problem into

maximization, negative energy can be considered.

Minimization of spin-glass energy can be easily transformed into a well known combinatorial

problem called minimum-weight cut (MIN-CUT); analogously, MIN-CUT problem instances can

be transformed into Ising spin glasses. Since MIN-CUT is NP-complete1 (Monien & Sudborough,

1988), the task of finding the ground state of unconstrained Ising spin-glass systems is NP-complete

in its general form. Here we consider a special case, where the spins are arranged on a two- or

three-dimensional grid and each spin interacts with only its nearest neighbors in the grid. Periodic

boundary conditions are used to approximate the behavior of a large-scale system. Therefore, spins

are arranged on a two- or three-dimensional toroid. Additionally, we constrain couplings constants
1NP-complete problems are solvable by nondeterministic Turning machines in polynomial time. However, there is

no known algorithm for solving any NP-complete problem in polynomial time—if a polynomial algorithm was found
for any NP-complete problem, all problems that are solvable by nondeterministic Turing machines could be solvable
in polynomial time.

172

Satisfied equality constraint

Satisfied inequality constraint

Unsatisfied equality constraint

Unsatisfied inequality constraint

Total unsatisfied = 3
Total satisfied = 15

Overall fitness = 15

Spin = +1

Spin = −1

Legend

Figure 7.1: An example two-dimensional spin-glass system of size n = 9 spins, arranged on a toroid
of size 3 × 3. Spins are shown as circles, non-zero coupling constants are shown as edges between
pairs of spins. If Jij = −1, the coupling constant introduces an equality constraint, if Jij = 1, the
coupling constant represents an inequality constraint. The more constraints are satisfied, the lower
the energy of the underlying spin-glass system. The task is to maximize the number of satisfied
constraints, which is equivalent to minimizing the energy of the underlying spin-glass system. The
figure shows the values of the spins in the ground state of the system (state with minimal energy).

to contain only two values, Jij ∈ {+1,−1}. In the two-dimensional case, several algorithms exist

that can solve the restricted class of spin glasses in polynomial time. We will compare the best

known algorithms to hierarchical BOA at the end of this section. However, none of these methods

is applicable to three-dimensional spin glasses.

Figure 7.1 shows an example two-dimensional spin-glass system with 9 spins arranged in a 3×3

toroid.

7.1.1 Methodology

In hierarchical BOA, each state of the system is represented by a binary string of size n, where n is

the total number of spins. Each bit in a solution string determines the state of the corresponding

spin: 0 denotes the state −1, 1 denotes the state +1. To estimate the scalability of hierarchical BOA

on two-dimensional spin-glass systems, we tested the algorithm on a number of two-dimensional

173

spin-glass systems of sizes ranging from n = 10 × 10 = 100 spins to n = 16 × 16 = 256 spins. For

each problem size, we generated 8 random problem instances. To generate a random instance, each

coupling constant was set to −1 with probability 50%, otherwise the constant was set to +1. To

confirm that a correct ground state was found for each system, we verified the results using the

Spin Glass Ground State Server provided by the group of Prof. Michael Jünger2.

For each problem instance, 30 independent runs are performed and hierarchical BOA is required

to find the optimum in all the 30 runs. The performance of hierarchical BOA is measured by the

average number of evaluations until the optimum is found. The population size for each problem

instance is determined empirically as the minimal population size for the algorithm to find the

optimum in all the runs. Binary tournament selection with replacement is used in all experiments

and the window size for RTR is set to the number of bits (spins) in a problem. Bayesian networks

with decision graphs are used and K2 metric with the term penalizing complex models is used to

measure the quality of each candidate model.

7.1.2 Results

Figure 7.2 shows the total number of evaluations for each problem instance (averaged over 30 runs)

and its average over all problem instances of the same size. Therefore, each point of the final

average corresponds to 8 × 30 = 240 runs. Additionally, the figure shows the best-fit polynomial

approximating the growth of the number of evaluations until the optimum was found. The total

number of evaluations appears to grow polynomially as O(n2.25), where n is the number of spins in

the system.

7.1.3 Discussion

There are two important questions that must be answered at this point:

• Why does the number of evaluations grow faster than predicted by the BOA and hBOA

scalability theory?

• How does the overall complexity compare to other known methods for the considered subclass

of Ising spin glasses?
2http://www.informatik.uni-koeln.de/ls juenger/projects/sgs.html

174

100 121 144 169 196 225 256
10

4

10
5

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns

Experimental average

O(n2.25)

Figure 7.2: The performance of hierarchical BOA on two-dimensional Ising spin-glass systems.
The size of the tested problems ranged from n = 100 for a 10 × 10 grid to n = 256 for a 16 × 16
grid. The figure shows the number of evaluations for each problem instance, the average number
of evaluations over all instances of the same size, and the empirical complexity.

The answer to the first question lies in the assumptions of the BOA and hBOA scalability

theory. In particular, the assumptions stated that the order of building blocks is constant and that

the problem can be decomposed into separable subproblems. If either assumption is not satisfied,

the complexity of hierarchical BOA could change. For instance, if the order of building blocks in

any building-block decomposition grows as a logarithm of the problem size, the number of fitness

evaluations is still expected to grow polynomially with the size of the problem, but the order of

the polynomial is greater than that for building blocks of a constant order. Although it far from

obvious whether the necessary building-block order grows with the size of spin glasses, it is clear

that the second assumption is not satisfied; the building blocks in spin-glasses are interconnected.

To answer the second question, let us first compute the overall computational complexity of

hierarchical BOA. Each evaluation of a spin-glass state can be bounded by O(n) trivial opera-

tions. There are O(n2.25) total evaluations, so the overall time spent in fitness evaluation grows as

O(n3.25). However, in this case the complexity of model building dominates other factors. In each

generation, the construction of a model takes approximately O(n3 + n2N) steps (Pelikan, Gold-

berg, & Cantú-Paz, 2000b), where N is the population size. According to the empirical results,

the growth of the population size can be approximated as O(n1.75); then, the time complexity of

model building in each generation can be bounded by O(n3.75). There are approximately O(
√

n)

175

generations total, so the overall time spent in model building can be bounded by O(n4.25). The

remaining overhead—such as model sampling and bookkeeping—is overshadowed by model build-

ing and fitness evaluation. Therefore, model building dominates other complexity factors, and the

overall time complexity of hierarchical BOA can be bounded by O(n4.25). If the model was updated

incrementally in each generation, the time complexity can be expected to decrease to somewhere

between O(n3.25) and O(n4.25).

There are several algorithms that attempt to solve the above special case of two-dimensional

spin glasses. Kardar and Saul (1994) can solve a subset of the considered class of spin-glass systems

in O(n3+ε), where ε < 1. De Simone, Diehl, Jünger, and Reinelt (1996) proposed a method to solve

the above case of spin-glass systems in approximately O(n3) for n ≤ 50, but they did not achieve

polynomial running time for bigger problems. Most recently, Galluccio and Loebl (Galluccio &

Loebl, 1999a; Galluccio & Loebl, 1999b) proposed an algorithm for solving spin glasses in O(n3.5)

for all graphs with bounded genus (two-dimensional toroids are a special case of graphs with

bounded genus). So, the overall time complexity of the best currently known algorithm for the

considered class of spin glasses is O(n3.5).

The above results indicate that hBOA performs slightly worse than the best known algorithm

in the field; in particular, hBOA requires O(n4.25) steps, whereas the algorithm of Galluccio and

Loebl requires O(n3.5) steps. However, hBOA does not use any problem-specific knowledge except

for the evaluation of possible states of the system, whereas the method of Galluccio and Loebl fully

relies on the knowledge of the problem structure and its properties. Even without requiring any

problem-specific information in advance, hBOA is capable of competing with the state-of-the-art

methods in the field. Furthermore, hBOA does not explicitly restrict the interaction structure of a

problem; consequently, hBOA is applicable to spin glasses in more than two dimensions and other

spin glasses that fall outside the scope of the method of Galluccio and Loebl.

There are several improvements that can be incorporated into hBOA to increase its efficiency.

First of all, as mentioned above, time complexity of hBOA can be reduced by using incremental

updates to the model. Additionally, using local search to improve candidate solutions in hBOA

can lead to a significant reduction of the required population size (Sastry, 2001a). Finally, prior

information about the structure of a problem can be used to improve model building and decrease

176

its computational complexity.

The following section implements one of the aforementioned improvements. In particular, the

section presents a hybrid method that combines hBOA with a deterministic hill climber based on

one-bit flips. The hill climber is used to improve every candidate solution in the population.

7.1.4 Solving Spin Glasses using hBOA + Local Search

Using local search usually improves the performance of selectorecombinative search, because the

search can focus on local optima, which reveal more information about the underlying structure of

the problem than randomly generated solutions do. Furthermore, the selectorecombinative search

can focus its exploration on basins of attraction as opposed to individual solutions.

It is fairly easy to incorporate local search in hierarchical BOA. There are several strategies

that can be used. Here we apply a deterministic hill climber (DHC) with one-bit flips to each

evaluated candidate solution. DHC repeatedly applies one-bit flips that improve the solution at

hand the most until no more improvement is possible. In the spin-glass problem, DHC needs only

one pass through the fitness function to find the best flip to perform and determine the energy of

the resulting system. This holds for any constraint satisfaction problem, because the best flip can

be determined by parsing the constraints, and accumulating the effects of flipping the bits involved

in each constraint. Therefore, for each iteration of DHC, only one fitness evaluation is necessary.

There are two ways of exploiting the results of local search. In the Baldwinian approach, the

fitness of the original solution is set to the fitness of the solution after local search but the original

solution is not modified; in the Lamarckian approach, both the fitness as well as the solution are

modified according to the result of local search. We take the Lamarckian approach by modifying

the solution as well as its fitness according to the result of local search.

A significant reduction of the required population sizes and running times was obtained when

using DHC to improve each candidate solution. Figure 7.3(a) shows the performance of hierarchical

BOA with DHC on the set of randomly generated spin-glass instances used in the previous section.

Figure 7.3(b) compares the performance of hBOA+DHC with that of hBOA without DHC.

There are two important observations. First, hBOA+DHC is capable of solving much larger

problem instances using the same number of evaluations; for example, the number of evaluations

177

100 121 144 169 196 225 256 400
10

3

10
4

10
5

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns
Experimental average

O(n2.73)

(a) Performance of hBOA with DHC.

100 121 144 169 196 225 256 400
10

3

10
4

10
5

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns

hBOA
hBOA+DHC

(b) Comparison of hBOA with and without DHC.

Figure 7.3: The number of fitness evaluations until the optimum was found with hierarchical BOA
with the discrete hill climber (DHC) on two-dimensional Ising spin-glass systems. The results are
compared to those of hBOA without DHC.

required by hBOA+DHC to solve problems of size n = 400 is lower than the number of evaluations

required by hBOA alone to solve problems of size of only n = 225. Second, the running times

significantly decrease, because the population sizes decrease approximately tenfold and the model

building is therefore much more efficient. In fact, the running times are better than those reported

by Galluccio and Loebl. For instance, the problem instances of n = 400 bits took on average 9.7

minutes per instance on a Pentium II/400MHz (the worst case took about 21 minutes, the best

case took about 2.92 minutes), while Galluccio and Loebl reported times of about 25 minutes on

an Athlon/500MHz. Therefore, hBOA+DHC is capable of finding the optimum significantly faster

despite that hBOA+DHC does not assume any particular structure of the problem.

7.1.5 From 2D to 3D

Despite that competent methods exist for solving two-dimensional spin glasses, none of these meth-

ods is directly applicable to three-dimensional spin glasses. That is why there is an ongoing re-

search on extending existing methods from two to three dimensions (Loebl, 2000). Nonetheless,

since hBOA does not explicitly use the dimensionality of the underlying spin-glass problem, it is

straightforward to apply hBOA+DHC to three-dimensional spin glasses.

178

64 125 216 343

10
3

10
4

10
5

10
6

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns

Experimental average

O(n3.63)

Figure 7.4: The number of fitness evaluations until the optimum was found with hierarchical BOA
with the discrete hill climber (DHC) on three-dimensional Ising spin-glass systems.

To test the scalability of hBOA+DHC, eight random spin-glass systems on a three-dimensional

cube with periodic boundary conditions were generated for the systems ranging from n = 4×4×4 =

64 to n = 7 × 7 × 7 = 343 spins. Since no other method exists to verify whether the found state

actually represents the ground state, the hybrid hBOA+DHC was first run on each instance with

an extremely large population of orders of magnitude larger than the expected one. After a number

of generations, the best solution found was assumed to represent the ground state. The bisection

method was then used to determine the optimal population size for each case.

Figure 7.4 shows the number of evaluations until hBOA+DHC found the ground state of the

tested three-dimensional Ising spin-glass instances. The overall number of evaluations appears to

grow polynomially as O(n3.65). That means that increasing the dimensionality of spin-glass systems

increases the complexity of solving these systems. However, efficient performance is retained even

in three dimensions.

7.2 Maximum Satisfiability (MAXSAT)

The task of find an interpretation of predicates that maximizes the number of satisfied clauses of a

given predicate logic formula expressed in conjunctive normal form, or MAXSAT, is an important

problem of complexity theory and artificial intelligence. Since MAXSAT is NP-complete in its

179

general form, there is no known algorithm that can solve MAXSAT in worst-case polynomial time.

In context of GAs, MAXSAT is usually used as an example class of problems that cannot be

efficiently solved by the selectorecombinative bias (Rana & Whitley, 1998), although some positive

results were reported with adaptive fitness (Gottlieb, Marchiori, & Rossi, 2002). The reason for

poor GA performance appears to be that short-order partial solutions lead away from the optimum

(sometimes in as many as 30% of predicate variables) as hypothesized by Rana and Whitley (1998).

Since hierarchical BOA outperforms GAs on complex decomposable and hierarchically decompos-

able problems, it would be interesting to apply hierarchical BOA to MAXSAT and see whether

hierarchical BOA is able to make any difference or not.

Here we consider the case where each formula is given in the conjunctive normal form with

clauses of length at most k; the formulas in this form are called k-CNF. A CNF formula is a logical

and of the clauses, where each clause is a logical or of k or less literals. Each literal is either a

predicate or a negation of a predicate. An example 3-CNF formula over predicates (variables) X1

to X5 is

(X5 ∨X1 ∨ ¬X3) ∧ (X2 ∨X1) ∧ (¬X4 ∨X1 ∨X5).

An interpretation of predicates assigns each predicate either true or false; for example, (X1 =

true,X2 = true,X3 = false,X4 = false,X4 = true) is an interpretation of X1 to X5. The task is

to find an interpretation that maximizes the number of satisfied clauses in the given formula. For

example, the assignment (X1 = true,X2 = true,X3 = true,X4 = true,X5 = true) satisfies all the

clauses in the above formula, and is therefore one of the optima of the corresponding MAXSAT

problem. MAXSAT is NP complete for k-CNF if k ≥ 2. However, it is possible to check whether

a 2-CNF formula is satisfiable (all clauses can be satisfied) in polynomial time.

7.2.1 Methodology

In hierarchical BOA, each candidate solution represents an interpretation of predicates in the

problem. Each bit in a solution string corresponds to one predicate; true is represented by 1, false

is represented by 0. The fitness of a solution is equal to the number of satisfied clauses given the

interpretation encoded by the solution. The deterministic hill climber with one-bit flips is used to

reduce the population-sizing requirements and improve the efficiency of the search. The hill climber

180

flips the bit that improves the current solution the most until no more improvement is possible.

DHC for MAXSAT is often called GSAT in the machine learning community (Selman, Levesque, &

Mitchell, 1992). As in spin glasses, each iteration of GSAT can be performed in one pass through

the formula.

For each problem instance, 30 independent runs are performed and hierarchical BOA is required

to find the optimum in all the 30 runs. The performance is measured by the average number of

evaluations until the optimum is found. The population size is determined empirically as the

minimal population size for the algorithm to find the optimum in all the runs. Binary tournament

selection with replacement is used in all experiments and the window size for RTR is set to the

number of bits (predicates) in the problem. Bayesian networks with decision graphs are used and

K2 metric with the term penalizing complex models is used to measure the quality of each candidate

model.

7.2.2 Other Methods Included in Comparison

Three methods are included in the comparisons: (1) GSAT, (2) WalkSAT, and (3) Satz. GSAT (Sel-

man, Levesque, & Mitchell, 1992) is a deterministic hill climber using one-bit flips. The initial

solution of GSAT is generated at random. In each iteration, GSAT changes the interpretation

of the predicate that leads to the largest increase in the number of satisfied clauses. If no more

improvement of the current solution is possible, GSAT is restarted with a random solution.

WalkSAT extends GSAT to incorporate random changes. In each iteration, WalkSAT performs

the greedy step of GSAT with the probability p; otherwise, one of the predicates that are included

in some unsatisfied clause is randomly selected and its interpretation is changed. Best results have

been obtained with p = 0.5, where both GSAT and a random perturbation are applied with the

same probability. However, the optimal choice of p might change from application to application.

The last method included in the comparison is Satz (Li & Anbulagan, 1997), which is an exten-

sion of the Davis-Putnam-Logemann-Loveland algorithm (Davis, Logemann, & Loveland, 1962).

Satz uses resolution (a sound and complete proof procedure for CNF) and several simple heuristics

to find a satisfying interpretation for the input formula or a proof that the formula is unsatisfi-

able. Satz does not actually solve MAXSAT; instead of finding an interpretation that maximizes

181

the number of satisfied clauses in the input formula, Satz only verifies whether the formula is sat-

isfiable or not. Therefore, one must be careful when interpreting the results of the comparison,

because proving whether a formula is satisfiable or not is a different task than that of finding an

assignment that maximizes the number of satisfied clauses.

7.2.3 Tested Instances

Two types of MAXSAT instances are tested: (1) random satisfiable 3-CNF formulas, and (2)

instances of combined-graph coloring translated into MAXSAT. All tested instances have been

downloaded from the Satisfiability Library SATLIB3.

Instances of the first type are randomly generated satisfiable 3-CNF formulas. All instances

belong to the phase transition region (Cheeseman, Kanefsky, & Taylor, 1991), where the number of

clauses is equal to 4.3n (n is the number of predicates). Random problems in the phase transition

are known to be the most difficult ones for most MAXSAT heuristics (Cheeseman, Kanefsky, &

Taylor, 1991).

There are two approaches to ensuring that random formulas are satisfiable. The first approach

generates a satisfying interpretation first, and then generates only such clauses that are satisfied

in the specified interpretation; these instances are called forced satisfiable instances. The second

approach is to generate formulas at random first (with uniform distribution), and then filter out

unsatisfiable instances using some of the complete algorithms such as Satz; these instances are called

unforced filtered satisfiable instances. It has been shown forced satisfiable instances are easier than

unforced filtered satisfiable instances. Here, hard instances are used, which are obtained by filtering

(formulas are unforced filtered). Despite generating problem instances from the phase transition,

all tested instances are rather easy for both WalkSAT and Satz.

Instances of the second type were generated by translating graph-coloring instances to MAXSAT.

In graph coloring, the task is to color the vertices of a given graph so that no connected vertices

share the same color. The number of colors is bounded by a constant. Every graph-coloring in-

stance can be mapped into a MAXSAT instance by introducing one predicate for each pair (color,

vertex), and creating a formula that is satisfiable if and only if exactly one color is chosen for each
3http://www.satlib.org/

182

SATLIB Archive Description Vars. Clauses Properties
uf20-91.tar.gz Random 3-CNF instances 20 91 Easy for WalkSAT
uf50-218.tar.gz from the phase transition 50 218 and Satz.
uf75-325.tar.gz region (c = 4.3n). 75 325
uf100-430.tar.gz 100 430
uf125-538.tar.gz 125 538
uf150-645.tar.gz 150 645
sw100-8-lp1-c5.tar.gz Instances obtained by 500 3100 Most instances
sw100-8-lp2-c5.tar.gz translating graph 500 3100 difficult for
sw100-8-lp3-c5.tar.gz coloring to MAXSAT. 500 3100 WalkSAT, some
sw100-8-lp4-c5.tar.gz Graphs created by 500 3100 difficult for
sw100-8-lp5-c5.tar.gz combining regular 500 3100 Satz.
sw100-8-lp6-c5.tar.gz lattices with random 500 3100
sw100-8-lp7-c5.tar.gz graphs are considered. 500 3100
sw100-8-lp8-c5.tar.gz Graphs are 5-colorable. 500 3100

Table 7.1: An overview of MAXSAT instances used in the experiments.

vertex, and the colors of the vertices corresponding to each edge are different.

Here, graph-coloring instances translated into MAXSAT instances are generated by combining

regular ring lattices and random graphs with a specified number of neighbors (Gent, Hoos, Prosser,

& Walsh, 1999). Combining two graphs consists of selecting (1) all edges that overlap in the two

graphs, (2) a random fraction (1−p) of the remaining edges from the first graph, and (3) a random

fraction p of the remaining edges from the second graph. By combining regular graphs with random

ones, the amount of structure in the resulting graph can be controlled; the smaller the p, the more

regular the graphs are (for p = 0, the resulting graph is a regular ring lattice).

For small values of p (from about 0.003 to 0.03), MAXSAT instances of the second type are

extremely difficult for WalkSAT and other methods based on local search. On the other hand, for

higher values of p, some instances are extremely difficult for Satz and other complete methods. All

instances are created from graphs of 100 vertices and 400 edges that are colorable using 5 colors,

and each coloring is encoded using 500 binary variables (predicates).

Table 7.1 summarizes tested MAXSAT instances and their basic properties.

183

20 50 75 100 125 150
10

2

10
3

10
4

10
5

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns

Experimental average (hBOA+GSAT)

O(n3.45)

Figure 7.5: Results of hierarchical BOA with GSAT on the MAXSAT for randomly generated
3-CNF satisfiable formulas (unforced). The problem instances were downloaded from SATLIB.

7.2.4 Results on Random 3CNF Satisfiable Instances

Figure 7.5 shows the performance of hierarchical BOA with GSAT on MAXSAT for randomly

generated (unforced filtered) 3-CNFs. Ten instances are tested for each problem size4. The per-

formance can be approximated by a polynomial O(n3.45), although an exponential growth can be

expected in the worst case.

How does the performance of hBOA+GSAT compare to that of other approaches? Figure 7.6(a)

compares the performance of hBOA+GSAT with that of GSAT alone. GSAT is capable of solving

only the simplest instances of up to n = 75 variables, because the computational time requirements

of GSAT grow extremely fast. Already for instances of n = 100 variables, GSAT could not find the

optimal interpretation even after days of computation. The increasing slope of GSAT complexity in

logarithmic scale indicates that the number of evaluations required by GSAT is exponential in the

number of variables in the problem. Therefore, GSAT alone cannot solve the problem efficiently,

although it improves the efficiency of hierarchical BOA when used in the hybrid hBOA+GSAT.

Figure 7.6(b) compares the performance of hBOA+GSAT with that of WalkSAT. The figure

indicates that the performance of WalkSAT is better than that of hBOA+GSAT both in the

magnitude and in the growth. Therefore, a simple randomization of GSAT performs better than

the sophisticated bias of hBOA+GSAT. Nonetheless, although hBOA uses selectorecombinative
4In particular, the first ten instances from the archives downloaded from SATLIB are used.

184

20 50 75 100 125 150

10
2

10
3

10
4

10
5

10
6

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns
GSAT
hBOA+GSAT

(a) Comparison of hBOA+GSAT with GSAT
alone.

20 50 75 100 125 150
10

2

10
3

10
4

10
5

Problem Size

N
um

be
r

of
 E

va
lu

at
io

ns

BOA+GSAT
WalkSat

(b) Comparison of hBOA+GSAT with WalkSAT.

Figure 7.6: Comparison of the performance of hBOA+GSAT with the performance of GSAT alone
and WalkSAT on the MAXSAT for randomly generated 3-CNF satisfiable formulas (unforced).
The problem instances were downloaded from SATLIB. hBOA+GSAT outperforms GSAT alone;
however, hBOA+GSAT is outperformed by WalkSAT.

bias based on problem decomposition and hierarchical problem decomposition, it is capable of

competing with local search on problem instances that are rather easy for local search.

Satz can verify satisfiability of all tested instances relatively fast. That indicates that the

tested instances are hard only for GSAT, which appears to require exponential time to solve these

instances. The performance of hBOA+GSAT is comparable to (but worse than) that of WalkSAT,

and it is qualitatively better than that of GSAT.

7.2.5 Results on Combined-Graph Coloring

Randomly generated 3-CNF instances are rather easy for most tested algorithms. Nonetheless,

real-world problems are not random, most real-world problems contain a considerable amount of

regularities. Combined-graph coloring described in Section 7.2.3 provides an interesting class of

problems, where regularity is combined with randomness. By controlling the relative amounts of

structure and randomness, interesting classes of problems can be generated. This section tests

the algorithms that performed relatively well on random 3-CNF, and applies these algorithms to

combined-graph coloring (translated into MAXSAT).

185

Instance Vars Clauses p hBOA+GSAT WalkSAT

Evaluations Evaluations

SW100-8-5/sw100-1.cnf 500 3600 2−5 1,262,018 > 40,000,000

SW100-8-5/sw100-2.cnf 500 3600 2−5 1,099,761 > 40,000,000

SW100-8-5/sw100-3.cnf 500 3600 2−5 1,123,012 > 40,000,000

SW100-8-6/sw100-1.cnf 500 3600 2−6 1,183,518 > 40,000,000

SW100-8-6/sw100-2.cnf 500 3600 2−6 1,324,857 > 40,000,000

SW100-8-6/sw100-3.cnf 500 3600 2−6 1,629,295 > 40,000,000
SW100-8-7/sw100-1.cnf 500 3600 2−7 1,732,697 > 40,000,000

SW100-8-7/sw100-2.cnf 500 3600 2−7 1,558,891 > 40,000,000

SW100-8-7/sw100-6.cnf 500 3600 2−7 1,966,648 > 40,000,000

SW100-8-7/sw100-7.cnf 500 3600 2−7 1,222,615 > 40,000,000

SW100-8-8/sw100-1.cnf 500 3600 2−8 1,219,675 > 40,000,000
SW100-8-8/sw100-2.cnf 500 3600 2−8 1,537,094 > 40,000,000

SW100-8-8/sw100-6.cnf 500 3600 2−8 1,650,568 > 40,000,000

SW100-8-8/sw100-7.cnf 500 3600 2−8 1,287,180 > 40,000,000

Table 7.2: The results of hierarchical BOA with GSAT on the MAXSAT instances that are prac-
tically unsolvable by WalkSAT. The instances are generated by translating the graph coloring of
5-colorable combined graphs. All instances were downloaded from SATLIB.

Although regular ring lattices (p = 0) can be solved by WalkSAT efficiently (Gent, Hoos,

Prosser, & Walsh, 1999), introducing even a slight perturbation to the regular graph by combining

it with a random graph severely affects WalkSAT’s performance. More specifically, WalkSAT is

practically unable to solve any instances with p ≤ 2−5 even with very large number of restarts and

trials. For these problem instances, the performance of GSAT is also poor.

On the other hand, hBOA+GSAT is capable of solving all these instances despite their large size

(500 variables). Table 7.2 shows the performance of hBOA on several instances that are practically

unsolvable by WalkSAT. WalkSAT is not able to solve any of these instances even when allowed to

check over 40 million interpretations (when the runs are terminated).

Satisfiability of most instances of the second type is easy to verify with Satz. However, there are

several instances for which Satz performs poorly. We selected some of those instances, and applied

hBOA+GSAT to them. Table 7.3 shows the performance of hBOA+GSAT and Satz on those

instances. The performance of Satz is measured by the number of branchings, which corresponds

to the number of decisions that Satz must make until it outputs the final answer. Since Satz is

186

Instance Vars Clauses p hBOA+GSAT Satz

Evaluations Branchings

SW100-8-1/sw100-1.cnf 500 3600 2−1 2,927,182 314,051,251

SW100-8-1/sw100-15.cnf 500 3600 2−1 3,578,068 12,350,045

SW100-8-2/sw100-44.cnf 500 3600 2−2 1,983,397 16,017,146

Table 7.3: The results of hierarchical BOA with GSAT on the MAXSAT instances that are ex-
tremely hard for Satz. The instances are generated by translating the graph coloring of 5-colorable
combined graphs. All instances were downloaded from SATLIB.

deterministic, only one run of Satz suffices for each instance. For Satz-hard instances shown in the

table, hBOA+GSAT proves its robustness, because it is capable of solving all these instances in

time comparable to that on other instances.

7.2.6 Discussion

There are several important observations regarding the performance of the hybrid hBOA+GSAT

on the tested MAXSAT instances.

hBOA+GSAT outperformed GSAT alone on all problem instances; not surprisingly, hBOA is

capable of supplying much better starting points for GSAT than random restarts do. However, on

the class of randomly generated 3-CNF, the hybrid hBOA+GSAT is outperformed by a randomized

GSAT called WalkSAT.

On the other hand, for those problem instances that are practically unsolvable by any local

search methods included in the comparison (WalkSAT and GSAT), hBOA+GSAT retains efficient

performance. In particular, MAXSAT instances obtained by translating graph coloring of graphs

with a large amount of structure and a little amount of randomness cannot be solved by GSAT

or WalkSAT even after tens of millions of evaluations, whereas hBOA+GSAT is capable of solving

all these problems in fewer than two million evaluations. Therefore, hBOA+GSAT can solve those

instances that are easy for local search (random 3-CNF), but it is not limited to those instances—it

can solve also problems that are practically unsolvable by local search alone.

Although Satz can verify satisfiability of most formulas efficiently, for several instances the

performance of Satz is extremely poor. As shown in Table 7.3, hBOA+GSAT is capable of solving

even those Satz-hard instances in time comparable to that on other instances. Nonetheless, recall

187

that Satz does not actually solve MAXSAT. Satz can only find a satisfying interpretation of the

formula or a proof that the formula is not satisfiable, but it cannot find the best interpretation for

an unsatisfiable formula; hBOA, GSAT, and WalkSAT can.

To summarize, hierarchical BOA can solve an array of MAXSAT problems of different structure

without requiring any information about the problem except for a measure of performance of each

candidate solution and the number of bits in candidate solutions. On some MAXSAT problems,

hierarchical BOA is outperformed by specialized heuristics; however, hierarchical BOA can solve

all problems that it was applied to, whereas other methods are very good on some problems

and very bad on other problems. Furthermore, note that the same algorithm was applied to

onemax, composed traps, exponentially scaled deceptive problems, hierarchical traps, spin glasses,

and MAXSAT. Hierarchical BOA is therefore robust not only with respect to specialized classes

of problems such as spin glasses or MAXSAT, but it provides a scalable solution to an array of

qualitatively different problem classes, as long as these problems are decomposable or hierarchically

decomposable.

7.3 Summary

This chapter applied hierarchical BOA to two real-world problems: (1) two- and three-dimensional

Ising spin-glass systems and (2) maximum satisfiability of predicate-logic formulas. The chapter

compared the performance of BOA to that of other algorithms for solving these two classes of

problems. A summary of the key points of this chapter follows:

• Finding the ground state of an Ising spin-glass system is an important problem of statisti-

cal physics. The behavior of the system at large scale can be approximated using periodic

boundary conditions. Each solution in hierarchical BOA represents a possible state of the

system by setting each spin to one of two values. The task is to find the state that minimizes

the energy of the system.

• For 2D Ising spin glasses with periodic boundary conditions, hBOA can find the ground state

in time O(n4.25), while the best method for the problem is capable of finding the ground state

in time O(n3.5). Therefore, hBOA does not outperform the best method in the field with

188

respect to the overall computational complexity. However, BOA does not use any problem-

specific knowledge except for the evaluation of possible states of the system, whereas the

specialized approaches fully rely on the knowledge of the problem structure and its proper-

ties. Even without requiring any problem-specific information in advance, hBOA provides

competitive results. Furthermore, hBOA does not explicitly restrict the interaction structure

of a problem; consequently, hBOA is applicable to spin glasses that fall outside the scope of

specialized methods.

• After incorporating a discrete hill climber (DHC) based one-bit flips into hBOA, the per-

formance of hBOA dramatically improves, yielding lower computational requirements than

the best-known method. For example, for a system of 20 × 20 spins, hBOA+DHC required

9.7 minutes on average, while the best method needed about 25 minutes even on a faster

computer.

• Since hBOA does not rely on the assumptions about the structure of spin-glass systems, the

hybrid hBOA+DHC can also be applied to 3D spin glasses. There exists no method that

solves 3D spin-glass systems in polynomial time. The results indicate that hBOA+DHC is

capable of solving 3D spin glasses in O(n3.65) evaluations.

• Maximum satisfiability of predicate logic formulas in conjunctive normal form (MAXSAT)

is a well known problem of computational complexity and artificial intelligence. The task

is to find an interpretation of predicates that maximizes the number of satisfied clauses in

a given formula. A deterministic hill climber based on one-bit flips was used to improve

the performance of hBOA. In MAXSAT, the deterministic hill climber based on one-bit flips

comprises the so-called GSAT algorithm.

• On randomly generated 3-CNF instances from the phase transition, hBOA+GSAT outper-

forms GSAT alone, which is not capable of solving problems of even a moderate size. There-

fore, hBOA is capable of supplying much better starting points for GSAT than random

restarts do.

• On the same set of problem instances, hBOA+GSAT is outperformed by simple randomized

hill climber (WalkSAT) that flips a random variable in an unsatisfied clause half of the time,

189

and it performs the greedy step of GSAT otherwise. Therefore, a simple randomization of

GSAT performs better than the sophisticated bias of hBOA+GSAT. Nonetheless, although

hBOA uses selectorecombinative bias based on problem decomposition and hierarchical prob-

lem decomposition, it is capable of competing with local search on problem instances that

are rather easy for local search.

• hBOA proves its robustness by being able to solve even those instances that are practically

unsolvable by WalkSAT or Satz.

• Although there are problems for which hBOA is outperformed by specialized methods (and

it is no surprise that this happens), note that the same algorithm was applied to onemax,

composed traps, hierarchical traps, spin glasses, and MAXSAT. Empirical results over this

wide spectrum of problems indicate that hierarchical BOA is robust not only within a specific

class of problems, but it provides a scalable solution to an array of qualitatively different

problem classes, as long as these problems are decomposable or hierarchically decomposable.

190

Chapter 8

Future Work

There are three promising avenues of future research on BOA and hBOA. The first focuses on

improving the efficiency of BOA and hBOA by parallelization, hybridization, and other efficiency-

enhancement techniques. The second focuses on the extensions of BOA and hBOA to problems

defined outside the domain of fixed-length strings over a finite alphabet, such as vectors of variable

length or program codes. The third focuses on extending the theory of BOA and hBOA. The

purpose of this chapter is to outline most important topics in each of the three areas.

The chapter starts with an overview of approaches to enhance the efficiency of BOA and hBOA.

Many efficiency-enhancement techniques can be adopted from GAs, but some techniques are directly

related to BOA and hBOA. Section 8.2 discusses important issues for extending the applicability

of BOA and hBOA to problems defined outside the domain of fixed-length finite-alphabet strings.

Section 8.3 discusses important theoretical issues for developing a more complete theory of BOA

and hBOA.

8.1 Enhancing the Efficiency

The results presented earlier indicate that BOA and hBOA are capable of solving difficult decom-

posable and hierarchically decomposable problems in a scalable manner. However, the polynomial

complexity itself is sometimes insufficient for the practical application of the algorithm. There are

two primary reasons for the concern about the practicality of polynomial-time optimizers (or any

other algorithms). First, the constants hidden in O(·) notation often obstruct the practical use

of computational methods for large problems. Second, even though the quadratic growth of the

191

number of fitness evaluations seems promising, if the problem has thousands or tens of thousands

variables, the quadratic growth leads to millions or hundreds of millions evaluations. Even if each

evaluation could be done in one second, it would take more than 11 days to evaluate million solu-

tions and it would take over 3 years to evaluate hundred million solutions. To successfully apply

hierarchical BOA to such large and computationally intensive problems, it is necessary to enhance

its efficiency as much as possible.

This section reviews the promising approaches to enhancing the efficiency of hierarchical BOA.

Most of these enhancements are covered in the four-part harmony of GA efficiency enhancements

studied at the Illinois Genetic Algorithms Laboratory (Goldberg, 2002; Sastry, 2001b; Albert,

2001).

8.1.1 Parallelization

The most straightforward way of making any algorithm work faster is to enable the algorithm to

use multiple computers or CPUs. There are several approaches to parallelizing hierarchical BOA:

1. Distribute fitness evaluation.

2. Distribute model building.

3. Distribute model sampling.

4. Distribute the population.

Different approaches might be useful in different cases. If fitness evaluation is computationally

intensive, a master-slave architecture can be used for distributing fitness evaluations and collecting

the results (Cantú-Paz, 2000). If most of the computational time is spent in model building,

model building should be parallelized by either (1) computing the frequencies in each step of the

greedy algorithm in parallel (again, a master-slave architecture can be used), or (2) building several

simpler models in parallel and combining the results afterwards. If large populations are necessary,

a population might be distributed among multiple processors, each of which would process only a

fraction of the entire population.

Many parallelization techniques and much of the theory can be adopted from GA research. One

of the most important works in the area of GA parallelization was published by Cantú-Paz (2000),

192

who provides useful theory and practical recommendations for ensuring that both the GAs run

faster and the resources available in multiprocessor architectures are fully utilized. In the context of

BOA, Ocenasek and Schwarz (2000) proposed the parallel BOA (pBOA) that distributes the model

building using the MPI standard. Another approach to parallelizing the construction of Bayesian

networks in the estimation of Bayesian network algorithm (EBNA) was discussed in Larranaga and

Lozano (2002).

8.1.2 Hybridization

The basic reason for combining BOA or hBOA with local search—or hybridization of BOA and

hBOA—is that by reducing the search space to the local optima in the problem, the structure of

the problem can be easily identified and the population-sizing requirements can be significantly de-

creased. Furthermore, the search reduces to the space of “attractors” around each local optimum as

opposed to the space of all potential solutions. The advantages of hybridization were demonstrated

in the previous chapter, where the performance of hierarchical BOA was significantly improved

with the addition of local search.

For the design of competent hybrid methods, it is necessary that the work is properly divided

between the global and local searchers, so that the overall time complexity is minimized (Goldberg

& Voessner, 1999; Goldberg, 2002; Sinha & Goldberg, 2002). When incorporating local search

into BOA and hBOA, it is often advantageous to use local search more extensively in the first

few generations to improve the initial probabilistic model as opposed to traditional GA practice.

Once local optima are present in the current population, the probabilistic model should oftentimes

be capable of sampling more local optima without the additional use of local search. Some the-

ory considering the important issues for the design of efficient and scalable hybrids can be found

in Goldberg and Voessner (1999), Goldberg (2002) and Sinha and Goldberg (2001). For survey of

hybrid GAs, see Belew and Mitchell (1996) and Sinha and Goldberg (2002).

8.1.3 Time Continuation

There are two bounding ways of getting to the final solution to a given problem:

1. Use a big population for a small number of generations.

193

2. Use a small population and optimize the problem in multiple epochs.

In all the experiments presented in this thesis, we have taken the first approach and used one big

population in a single run. However, sometimes it is advantageous to use a much smaller population

and obtain only a part of the optimal solution at first, then perturb the solutions slightly, and run

the algorithm for the second time (Goldberg, 1999c; Srivastava & Goldberg, 2001). Running BOA

and hBOA for multiple epochs would significantly decrease the cost of model building and sampling.

However, small populations might not be sufficient for discovering a satisfactory model.

Promising research directions related to time continuation should focus on answering the fol-

lowing questions. For what problems is it advantageous to run BOA and hBOA for multiple epochs

with smaller populations? How to identify important features for making that distinction on the

fly? Can a probabilistic model learned by BOA be used to make time-continuation approaches

more effective in reducing the overall time complexity (e.g., by helping to design better perturba-

tion operators)? What configuration (population size, number of epochs, perturbation methods)

is the most efficient for specific classes of problems (decomposable, exponentially scaled, hierarchi-

cal)? For problems with high salience, where only a fraction of variables matters at any point (e.g.,

exponentially scaled deceptive problems), it can be expected that using multiple epochs is advan-

tageous, because only partially correct models suffice. However, for problems with low salience or

difficult hierarchical problems, dividing the search into multiple epochs could cause performance to

deteriorate.

For more information regarding time continuation in GAs, see Goldberg (1999c), Goldberg

(2002), and Srivastava and Goldberg (2001). Although the situation is different for BOA and

hBOA, the results of the GA research might still suggest promising directions in approaching the

aforementioned questions.

8.1.4 Prior Knowledge Utilization

In the experiments presented in this thesis, no prior knowledge about the problem was incorporated

into BOA or hBOA. The reason for ignoring the prior knowledge was to provide sufficient evidence

that both BOA and hBOA are capable of solving boundedly difficult problems in a scalable manner

without the use of any prior information about the structure of the problem or its properties.

194

However, in real world, there is often much knowledge about the problem at hand, and it would be

valuable to use all the information available. There are two straightforward ways of incorporating

prior knowledge into BOA: (1) bias the initial population, and (2) bias model building.

The initial population of BOA and hBOA is usually generated at random with the uniform

distribution. But in some cases it might be possible to incorporate the prior knowledge about the

problem by biasing the generation of the initial population to ensure there is a better initial supply

of good solutions. These approaches have proven useful in the domain of graph partitioning with

BOA (Schwarz & Ocenasek, 2000) and silicon cluster optimization with ECGA (Sastry, 2001a).

There are alternative ways of biasing the initial population. Local search can be used to improve

the quality of candidate solutions in the initial population before the optimization starts. An expert

can incorporate his or her knowledge by injecting promising partial or fully specified solutions in a

fraction of the initial population. But in any case, the basic idea of biasing the initial population is

to improve the quality of candidate solutions in the initial population to accelerate optimization.

Another approach to incorporating prior knowledge about the problem is to introduce additional

bias in model building. There are two ways of incorporating prior knowledge into model building:

(1) prior probabilities of structures, and (2) prior probabilities of partial solutions. If there is

information available about the most likely interactions in the problem, the prior probability of

those network structures that contain many of these interactions can be increased at the expense of

other possible structures (see Section 3.3). An alternative way is to restrict the interactions in the

model to those that are known to be important for solving the given problem. Prior probabilities

of partial solutions can also be incorporated using Bayesian metrics; if good partial solutions are

known, this information can lead to an increased quality of the model. Schwarz and Ocenasek

(2000) discuss some of the interesting approaches to incorporating prior knowledge in the domain

of graph partitioning. Important directions of future research should consider the aforementioned

approaches to incorporating prior knowledge into BOA and hBOA and analyze the efficiency of the

resulting approaches for specific classes of problems.

195

8.1.5 Fitness Evaluation Relaxation

On some problems—such as traps, hierarchical traps, spin glasses, and MAXSAT—the evaluation

of each solution is a trivial task and thousands or tens of thousands of candidate solutions can

be evaluated in a few seconds. However, to evaluate each solution in some problems, it might

be necessary to simulate a stochastic process, execute an experiment in a wind tunnel, interact

with the human operator, or use a finite element analysis. In that case, the fitness evaluation

becomes prohibitively expensive for using population-based search with large populations, which

are necessary for a successful application of BOA and hBOA.

To reduce the time complexity of fitness evaluation, an approximation of the fitness or a coarse-

grained model can be used when possible (Albert, 2001; Sastry, 2001b). On one hand, using the

approximation of the actual fitness decreases the computational time required to compute the fit-

ness. On the other hand, the approximations usually lead to errors in the fitness, which can be

biased or unbiased. Even if these errors are biased, the fitness approximation might still be very use-

ful at the beginning of optimization, when the differences between the quality of different solutions

in the population are much larger than the errors introduced by approximative fitness evaluation.

However, later in the run the amount of error should be decreased, so that the algorithm converges

to a true optimum (Albert, 2001; Sastry, 2001b). If errors introduced by an approximative model

are unbiased, the overall computational complexity using each possible model must be considered

to determine the best model to use (Miller & Goldberg, 1996b; Albert, 2001; Sastry, 2001b).

The approximation of the fitness can be obtained by modifying the parameters of the simulation

or building an internal model (e.g., a neural network) for evaluating a specified fraction of the

population (Albert, 2001; Sastry, 2001b). For example, the stochastic simulation can be run for a

certain period of time, and the more time the simulation gets, the more accurate the final results

are. In the finite element analysis, the mesh approximation can range from fine to coarse, affecting

the accuracy of the result. Another way of approximating fitness is to build an internal model of

the fitness incrementally. In that case, the GA can learn a neural network, a linear model, or a

quadratic model of the fitness online, and use the model to approximate the fitness of a specified

fraction of the population (Sastry, Goldberg, & Pelikan, 2001; Sastry, 2001b).

While in GAs, approximate fitness evaluation affects only the decision making, in BOA and

196

hBOA the model building is affected as well. Important questions include the following. What are

the tradeoffs between the time saved by approximate fitness evaluation and the time lost by using

an “imperfect” fitness to learn a model? How does the situation change compared to GAs? How

can the model learned by BOA be used to learn a better internal model of the fitness on the fly?

8.1.6 Incremental and Sporadic Model Building

In our implementation of BOA and hBOA, the model is built from scratch in each generation.

However, as was suggested by Etxeberria and Larrañaga (1999), an incremental model building

can reduce the time complexity of model building in subsequent generations. Furthermore, perfor-

mance can be improved by learning the structure of a model sporadically at certain intervals, while

updating only the parameters of the model in the remaining generations.

If the model is a traditional Bayesian network, it is fairly straightforward to build the model

incrementally. However, if Bayesian networks with decision graphs are used, the task of updating

the model becomes much more complicated. One important topic of future research is to provide

an efficient technique for updating Bayesian networks with decision graphs on the fly. Of course,

incremental learning must be more efficient than building a model from scratch.

To further reduce the time complexity of model building, structural learning can be performed

only at certain intervals, while in the remaining time only the conditional probabilities in a model

must be updated. The update of conditional probabilities can be obtained by one pass through

the population of promising solutions. Learning the structure of a model less frequently should

significantly reduce the computational cost of model building. However, if a bad structure is learned

in some generation, this structure will affect subsequent generations in addition to the current one.

It is important that the potential savings in model building will not endanger convergence to the

optimum. Moreover, the time saved by learning the model less frequently must be lower than the

time lost by using a model that is not up-to-date.

8.2 Extending the Applicability

BOA and hBOA are applicable to problems where the solutions are represented by fixed-length

strings over a finite alphabet and the quality of each solution is expressed as a real number. How

197

can we apply the two algorithms to problems where the solutions are represented by variable-length

strings, vectors of real numbers, or program codes represented by tree structures? How can we

extend the two algorithms to take into account multiple objectives at the same time to determine

the tradeoff between the objectives? A promising area of future research on BOA and hBOA

deals with the above two questions in order to extend the applicability of BOA and hBOA. This

section discusses possible directions for extending BOA and hBOA to incorporate multiobjective

optimization and other than fixed-length finite-alphabet strings.

8.2.1 Multiobjective Optimization

This thesis considered the problems with a single objective. However, in many engineering problems

there are multiple criteria or objectives. Consider designing a radiator in the heat exchanger with

two objectives: (1) minimize the size of the radiator, and (2) maximize the heat exchange. Clearly,

there is a tradeoff between the two objectives; the smaller the radiator, the less heat is exchanged.

One way of dealing with several objectives is to weight the objectives, and compute the fitness

of each solution as a weighted average of the fitnesses with respect to each objective. In that case,

single-objective optimization methods can be applied to solve the weighted problem. However, it

is often impossible to find proper weights without knowing what the real tradeoff is. That is why

it is often necessary to take into account both the objectives. If the solution is outperformed by

any other solution in both the objectives, the solution is not useful, because it is dominated by the

other solution. However, if the solution outperforms any other solution in at least one objective,

then the solution might be useful in the end. Of course, the scheme can be generalized to more

than two objectives. Multiobjective optimization attempts to find these solutions that are better

than other solutions in at least one objective, comprising the so-called Pareto-optimal front.

The primary task of multiobjective optimization techniques is to find a diverse Pareto-optimal

front. In other words, the task is to find the widest tradeoff curve possible, so that it both contains

good solutions and it allows the user to choose from a wide variety of solutions. Extending BOA

to multiobjective problems is straightforward and a lot can be adopted from GA research for

multiobjective optimization (Deb, 2001). However, hBOA has its own niching mechanism and it’s

not as easy to incorporate a Pareto-front related niching into the scheme. One of the important

198

research directions is to combine solution-based niching of hBOA and Pareto-based niching of

multiobjective GAs to ensure that both hard problems can be solved and a diverse Pareto front is

discovered.

A thorough overview of the most recent developments in multiobjective optimization can be

found in (Deb, 2001). Thierens and Bosman (2001) incorporated multiobjective optimization tech-

niques in the IDEA framework based on mixture distributions. Khan (2002) combined the advanced

methods of multiobjective optimization with BOA and proposed a set of multiobjective problems

that require both the automatic discovery of a proper problem decomposition as well as the main-

tenance of a diverse Pareto front.

8.2.2 From Binary Strings to Computer Programs

BOA and hBOA can optimize problems defined over fixed-length strings over a finite alphabet.

How to apply BOA or hBOA if the problem at hand is defined over vectors of real numbers,

variable-length binary vectors, or graph structures? Section 2.4 identified the two basic approaches

to extending BOA and hBOA to other domains:

1. Map the other domain to the domain of fixed-length discrete strings.

2. Extend or modify the model from the discrete fixed-length strings to other domains.

The first approach is straightforward; a mapping function must be designed that transforms

every candidate solution from the other domain to the domain of fixed-length binary (or k-ary)

strings. The mapping does not have to be one-to-one; groups or clusters of candidate solutions in

other domains can be mapped into the same solution. However, it is necessary that the solutions

that are mapped into one string are very similar and can be indeed represented as one member of

the search space.

The second approach is to modify the model to the new domain. Section 2.4 discussed some

of the models that can be used in other domains. Mixtures of normal distributions, products of

mixtures, probabilistic trees, and other models can be used. Each of these models can be superior

to other ones in some cases, and it is crucial to identify the classes of problems that the models can

solve efficiently, reliably, and accurately.

199

One of the most promising lines of research is to extend BOA and hBOA to the domain of

computer programs of genetic programming. Clearly, competent genetic programming techniques

could be applied to a wide variety of domains using only little problem specific knowledge by

evolving populations of computer programs. There is an ongoing discussion on the scalability

of traditional genetic programming, but many experimental results suggest that extremely large

populations must be used to achieve competitive results. That suggests that genetic programming

might be facing the same problem as traditional genetic algorithms do, and that there is a need

for some form of automatic identification of the regularities in the problem at hand. Once the

regularities are identified, these can be exploited to ensure a scalable optimization within the

framework of genetic programming.

8.3 Developing Additional Theory

Although the most important goal of the design of BOA and hBOA was to provide a competent

adaptive black-box optimization method that can exploit decomposition and hierarchical decom-

position, the development of theory is important for identifying the classes of problems that can

be reliably solved by BOA and hBOA in an efficient and scalable manner and providing practical

recommendations for setting the different parameters of the algorithms. The theory presented in

chapters 4 and 6 suggested that on decomposable problems of bounded difficulty, the total number

of fitness evaluations should grow subquadratically or quadratically with the size of the problem.

However, the theory presented in this thesis represents only the first few steps toward a com-

plete theory that takes into account all the factors that can be encountered in real-world problems.

These factors include decomposition where the subproblems interact in some way, decomposition

where the order of subproblems grows with the size of the problem, the effects of using the re-

stricted tournament selection as a replacement strategy, and others. Probably the most important

theoretical issue is the one related to overlap in decomposable problems. Some sufficient conditions

exist for determining good models with overlap (Mühlenbein, Mahnig, & Rodriguez, 1999), but

there is much work to be done for a better and more practical theory. Furthermore, it is important

to relate the sufficient conditions for a good problem decomposition for decomposable problems

with much overlap to the theory considering model building similar to that presented in chapter 4.

200

Finally, an interesting area of future research on BOA and hBOA is in designing problems that

deceive model building in some way. Similarly as composed traps helped make GAs better by

making them fail, designing problems that are currently beyond the class of problems solvable by

BOA and hBOA can help make BOA and hBOA more powerful.

201

Chapter 9

Conclusions

The purpose of this chapter is to provide the summary and main conclusions of this dissertation.

First, the contributions of the dissertation are summarized. Next, the main conclusions of the

dissertation are provided.

9.1 What Has Been Done

A summary of the major results of this thesis follows:

Bayesian optimization algorithm (BOA) The thesis proposed the Bayesian optimization al-

gorithm (BOA), which replaces traditional variation operators of GAs by (1) building a

Bayesian network for promising solutions and (2) sampling new solutions according to the

built network. Building the network allows for automatic discovery of regularities in the prob-

lem at hand. Sampling the constructed network allows for effective exploitation of encoded

regularities. BOA can solve hard problems of bounded difficulty in subquadratic or quadratic

time with respect to the number of candidate solutions that must be evaluated until the

algorithm converges to the optimum.

Scalability theory of BOA A theory was developed that estimates the number of fitness eval-

uations until convergence of BOA on problems of bounded difficulty. The number of fitness

evaluations was computed by (1) approximating an adequate population size for reliable con-

vergence to the optimum, (2) estimating the number of generations until convergence, and

(3) making a product of these two quantities. The theory confirmed that the number of

202

evaluations until convergence to the optimum for problems of bounded difficulty grows sub-

quadratically or quadratically with the problem size, depending on the type of the problem.

Hierarchy for complexity reduction Hierarchical decomposition allows for a scalable solution

of those problems that are not decomposable on a single level but that can be solved by

decomposition over multiple levels of difficulty. The thesis identified three important features

that must be incorporated into optimizers that exploit problem decomposition to ensure that

the algorithms can solve difficult hierarchical problems in a scalable manner. The issues

comprise the three keys to hierarchy success: (1) proper decomposition, (2) chunking, and

(3) preservation of alternative solutions. On each level, the problem must be decomposed

properly so that the algorithm is not misled by salient nonlinearities on the current level. Best

partial solutions of the subproblems on each level must be represented in a compact way and a

mechanism for chunking partial solutions must be introduced so that these can be juxtaposed

effectively on higher levels. Finally, alternative partial solutions to the subproblems on each

level of decomposition must be preserved until it becomes possible to eliminate some of the

alternatives.

Hierarchical traps In the development of competent optimization methods, it is important to

design a class of problems that can be used to test developed techniques on the boundary

of their design envelope. The design of difficult hierarchical problems can be guided by the

three keys to hierarchy success, so that any algorithm that is incapable of tackling the three

keys to hierarchy success will fail at solving the proposed class of problems efficiently. The

thesis proposed hierarchical traps to provide a class of difficult hierarchical problems that

can be used to test optimization methods that attempt to exploit hierarchical decomposition.

Hierarchical traps are practically unsolvable if the three keys to hierarchy success are not

dealt with properly.

Hierarchical BOA Hierarchical BOA extends BOA by (1) using local structures to represent

local probability distributions in Bayesian networks more compactly and (2) using restricted

tournament replacement to incorporate new candidate solutions into the original population

of candidate solutions. Hierarchical BOA was shown to solve hierarchical traps and other

203

hard problems in a subquadratic or quadratic number of evaluations.

Experiments on artificial and real-world problems A number of experiments to verify the

scalability of BOA and hBOA were performed. Three fundamentally different sets of problems

were used: (1) boundedly difficult decomposable problems, (2) difficult hierarchical problems,

and (3) real-world problems. Empirical results on boundedly-difficult problems—onemax,

composed traps, and composed deceptive functions—indicated that BOA can solve the class

of problems decomposable into subproblems of bounded order in a scalable manner. Em-

pirical results on hierarchically difficult problems—hierarchical traps and HIFF—indicated

that hierarchical BOA is capable of solving difficult hierarchical problems in a scalable man-

ner. Empirical results on two real-world problems—2D and 3D Ising spin-glass systems

and MAXSAT—showed that hierarchical BOA can not only compete with state-of-the-art

methods that are designed to solve a specific class of problems, but that it can oftentimes

outperform those methods. A hybrid algorithm comprising of hierarchical BOA and a simple

local searcher has proven to be advantageous in real-world applications.

Future work on BOA, hBOA, and PMBGAs The thesis gave a number of suggestions for

future research on BOA, hBOA, and other PMBGAs. There are three important research

directions. The first focuses on enhancing the efficiency; the second considers improving the

applicability of BOA and hBOA; the last deals with developing additional theory and test

problems.

9.2 Main Conclusions

A scalable black-box optimization algorithm capable of automatic discovery and effective exploita-

tion of single-level and hierarchical problem decomposition exists and is ready for application.

The Bayesian optimization algorithm (BOA) and the hierarchical Bayesian optimization algorithm

(hBOA) can solve a broad class of problems as long as these problems are decomposable on a

single level or multiple levels of difficulty. For a successful application of BOA and hBOA, no prior

knowledge about the problem is required except for the (1) number of decision variables and (2) a

measure for evaluating candidate solutions.

204

There are only a few parameters that must be set in BOA and hBOA. In fact, the only param-

eter that really matters is the population size, because all the remaining parameters change the

performance only marginally. The population size can also be eliminated by using the parameter-

less population-sizing scheme of Harik and Lobo (1999). Therefore, the developed algorithms can

be applied to the problem at hand without knowing much about the problem itself and without

worrying about thresholds or any other parameters.

Although BOA and hBOA do not rely on problem-specific knowledge, it is fairly straightforward

to incorporate prior knowledge about the problem into the algorithms to further improve their

efficiency. Prior knowledge of various forms can be incorporated; the initial population can be

biased according to the expert knowledge or using other search, optimization, and machine learning

techniques; the structure of the problem can be incorporated into the model building by favoring

models similar to a suggested structure or set of structures; finally, promising partial solutions can

be incorporated into the measure for discriminating competing probabilistic models.

For practitioners seeking robust, efficient, and scalable optimization techniques, BOA and hBOA

represent a significant step forward; BOA and hBOA do not require the user to be an expert in

the field of optimization, nor do they require the user to provide complete information about the

structure of the problem and its properties. Despite that, BOA and hBOA can achieve competitive

or better performance compared to specialized methods that fully rely on problem-specific knowl-

edge. Furthermore, prior problem-specific knowledge can be incorporated at no extra cost, and the

algorithms can be easily combined with specialized local searchers.

BOA and hBOA should have a large impact on the research in genetic and evolutionary com-

putation and computational optimization in general. First of all, BOA provides a powerful solution

to linkage learning in genetic and evolutionary algorithms. Second, hierarchical BOA extends the

basic approach to linkage learning to solve difficult hierarchical problems, which are practically

unsolvable by other known optimization methods. Finally, BOA and hBOA replace specialized

heuristics that are often incorporated into genetic and evolutionary optimization techniques to

improve their performance on difficult problems by rigorous methods of statistics and probability

theory.

205

Bibliography

Ackley, D. H. (1987). An empirical study of bit vector function optimization. Genetic Algorithms

and Simulated Annealing , 170–204.

Albert, L. A. (2001). Efficient genetic algorithms using discretization scheduling. Master’s thesis,

University of Illinois at Urbana-Champaign, Department of General Engineering, Urbana,

IL.

Asoh, H., & Mühlenbein, H. (1994). On the mean convergence time of evolutionary algorithms

without selection and mutation. Parallel Problem Solving from Nature, 88–97.

Baker, J. E. (1985). Adaptive selection methods for genetic algorithms. Proceedings of the Inter-

national Conference on Genetic Algorithms (ICGA-85), 101–111.

Baluja, S. (1994). Population-based incremental learning: A method for integrating genetic search

based function optimization and competitive learning (Tech. Rep. No. CMU-CS-94-163). Pitts-

burgh, PA: Carnegie Mellon University.

Baluja, S., & Davies, S. (1997). Using optimal dependency-trees for combinatorial optimization:

Learning the structure of the search space. Proceedings of the International Conference on

Machine Learning , 30–38.

Baluja, S., & Davies, S. (1998). Fast probabilistic modeling for combinatorial optimization.

Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98), 469–

476.

Belew, R. K., & Mitchell, M. (Eds.) (1996). Adaptive individuals in evolving populations: Models

and algorithms. Reading, MA: Addison Wesley.

Booker, L. B. (1982). Intelligent behavior as an adaptation to the task environment. Doctoral

dissertation, The University of Michigan. (University Microfilms No. 8214966).

206

Bosman, P., & Thierens, D. (2001). Exploiting gradient information in continuous iterated density

estimation evolutionary algorithms. Proceedings of the Belgium-Netherlands Conference on

Artificial Intelligence (BNAIC-2001), 69–76.

Bosman, P. A., & Thierens, D. (2000a). Continuous iterated density estimation evolutionary al-

gorithms within the IDEA framework. Workshop Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO-2000), 197–200.

Bosman, P. A., & Thierens, D. (2000b). Mixed IDEAs (Utrecht University Technical Report

UU-CS-2000-45). Utrecht, Netherlands: Utrecht University.

Bosman, P. A. N., & Thierens, D. (1999). Linkage information processing in distribution es-

timation algorithms. Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO-99), I , 60–67.

Cantú-Paz, E. (2000). Efficient and accurate parallel genetic algorithms. Boston, MA: Kluwer.

Cantú-Paz, E. (2001). Supervised and unsupervised discretization methods for evolutionary al-

gorithms. Workshop Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO-2001), 213–216.

Cavicchio, Jr., D. J. (1970). Adaptive search using simulated evolution. Unpublished doctoral

dissertation, University of Michigan, Ann Arbor, MI. (University Microfilms No. 25-0199).

Ceroni, A., Pelikan, M., & Goldberg, D. E. (2001). Convergence-time models for the simple

genetic algorithm with finite population (IlliGAL Report No. 2001028). Urbana, IL: University

of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory.

Cheeseman, P., Kanefsky, B., & Taylor, W. M. (1991). Where the really hard problems are.

Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI-91), 331–

337.

Chickering, D. M., Geiger, D., & Heckerman, D. (1994). Learning Bayesian networks is NP-hard

(Technical Report MSR-TR-94-17). Redmond, WA: Microsoft Research.

Chickering, D. M., Heckerman, D., & Meek, C. (1997). A Bayesian approach to learning Bayesian

networks with local structure (Technical Report MSR-TR-97-07). Redmond, WA: Microsoft

Research.

207

Chow, C., & Liu, C. (1968). Approximating discrete probability distributions with dependence

trees. IEEE Transactions on Information Theory , 14 , 462–467.

Cohoon, J. P., Hegde, S. U., Martin, W. N., & Richards, D. (1987). Punctuated equilibria: A

parallel genetic algorithm. Proceedings of the International Conference on Genetic Algorithms

(ICGA-87), 148–154.

Collins, R. J., & Jefferson, D. R. (1991). Selection in massively parallel genetic algorithms.

Proceedings of the International Conference on Genetic Algorithms (ICGA-91), 249–256.

Cooper, G. F., & Herskovits, E. H. (1992). A Bayesian method for the induction of probabilistic

networks from data. Machine Learning , 9 , 309–347.

Culberson, J. C. (1992). Genetic invariance: A new paradigm for genetic algorithm design.

Unpublished manuscript.

Davidor, Y. (1991). A naturally occuring niche and species phenomenon: The model and first

results. Proceedings of the International Conference on Genetic Algorithms (ICGA-91), 257–

263.

Davies, S., & Moore, A. (1999). Using Bayesian networks for lossless compression in data mining.

Proceedings of the International Conference on Knowledge Discovery & Data Mining (KDD-

99), 387–391.

Davis, M., Logemann, G., & Loveland, D. (1962). A machine program for theorem proving.

Communications of the ACM , 5 (7), 394–397.

De Bonet, J. S., Isbell, C. L., & Viola, P. (1997). MIMIC: Finding optima by estimating proba-

bility densities. Advances in neural information processing systems (NIPS-97), 9 , 424–431.

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive systems. Doctoral

dissertation, University of Michigan, Ann Arbor. (University Microfilms No. 76-9381).

De Simone, C., Diehl, M., Jünger, M., & Reinelt, G. (1996). Exact ground states of two-

dimensional +−J Ising spin glasses. Journal of Statistical Physics, 84 , 1363–1371.

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Chichester, UK: John

Wiley & Sons.

208

Deb, K., & Goldberg, D. E. (1989). An investigation of niche and species formation in genetic

function optimization. Proceedings of the International Conference on Genetic Algorithms

(ICGA-89), 42–50.

Deb, K., & Goldberg, D. E. (1991). Analyzing deception in trap functions (IlliGAL Report No.

91009). Urbana, IL: University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms

Laboratory.

Edmonds, J. (1967). Optimum branching. J. Res. Nat. Bur. Standards, 71B , 233–240.

Eldredge, N., & Gould, S. J. (1972). Punctuated equilibria: An alternative to phyletic gradualism.

In Schopf, T. (Ed.), Paleobiology (pp. 82–115). San Francisco, CA: Freeman & Company.

Etxeberria, R., & Larrañaga, P. (1999). Global optimization using Bayesian networks. In Ro-

driguez, A. A. O., Ortiz, M. R. S., & Hermida, R. S. (Eds.), Second Symposium on Artificial

Intelligence (CIMAF-99) (pp. 332–339). Habana, Cuba: Institude of Cybernetics, Mathemat-

ics, and Physics and Ministry of Science, Technology and Environment.

Feller, W. (1970). An introduction to probability theory and its applications. New York, NY:

Wiley.

Fonseca, C. M., & Fleming, P. J. (1993). Genetic algorithms for multiobjective optimization:

Formulation, discussion and generalization. Proceedings of the International Conference on

Genetic Algorithms (ICGA-93), 416–423.

Friedman, N., & Goldszmidt, M. (1999). Learning Bayesian networks with local structure. In

Jordan, M. I. (Ed.), Graphical models (pp. 421–459). Cambridge, MA: MIT Press.

Friedman, N., & Yakhini, Z. (1996). On the sample complexity of learning Bayesian networks.

Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI-96), 274–282.

Gallagher, M., Frean, M., & Downs, T. (1999, 13-17 July). Real-valued evolutionary optimization

using a flexible probability density estimator. Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO-99), 1 , 840–846.

Galluccio, A., & Loebl, M. (1999a). A theory of Pfaffian orientations. I. Perfect matchings and

permanents. Electronic Journal of Combinatorics, 6 (1). Research Paper 6.

209

Galluccio, A., & Loebl, M. (1999b). A theory of Pfaffian orientations. II. T-joins, k-cuts, and

duality of enumeration. Electronic Journal of Combinatorics, 6 (1). Research Paper 7.

Geiger, D., & Heckerman, D. (1996). Beyond Bayesian networks: Similarity networks and

Bayesian multinets. Artificial Intelligence, 82 , 45–74.

Geiger, D., Heckerman, D., & Meek, C. (1996). Asymptotic model selection for directed networks

with hidden variables. Proceedings of the Conference on Uncertainty in Artificial Intelligence

(UAI-96), 158–168.

Gent, I., Hoos, H. H., Prosser, P., & Walsh, T. (1999). Morphing: Combining structure and

randomness. Proceedings of the American Association of Artificial Intelligence (AAAI-99),

654–660.

Goldberg, D. E. (1983). Computer-aided gas pipeline operation using genetic algorithms and rule

learning. Dissertation Abstracts International , 44 (10), 3174B. Doctoral dissertation, Univer-

sity of Michigan.

Goldberg, D. E. (1989a). Genetic algorithms in search, optimization, and machine learning.

Reading, MA: Addison-Wesley.

Goldberg, D. E. (1989b). Sizing populations for serial and parallel genetic algorithms. Proceed-

ings of the International Conference on Genetic Algorithms (ICGA-89), 70–79. Also IlliGAL

Report No. 88004.

Goldberg, D. E. (1994). First flights at genetic-algorithm Kitty Hawk (IlliGAL Report No. 94008).

Urbana, IL: University of Illinois at Urbana-Champaign.

Goldberg, D. E. (1998, June 15). Four keys to understanding building-block difficulty. Presented

in Projet FRACTALES Seminar at I.N.R.I.A. Rocquencourt, Le Chesnay, Cedex.

Goldberg, D. E. (1999a). Genetic and evolutionary algorithms in the real world (IlliGAL Re-

port No. 99013). Urbana, IL: University of Illinois at Urbana-Champaign, Illinois Genetic

Algorithms Laboratory.

Goldberg, D. E. (1999b). The race, the hurdle, and the sweet spot: Lessons from genetic al-

gorithms for the automation of design innovation and creativity. In Evolutionary Design by

Computers (pp. 105–118). San Francisco, CA: Morgan Kaufmann.

210

Goldberg, D. E. (1999c). Using time efficiently: Genetic-evolutionary algorithms and the con-

tinuation problem. Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO-99), 212–219. Also IlliGAL Report No. 99002.

Goldberg, D. E. (2002). The design of innovation: Lessons from and for competent genetic

algorithms. In press.

Goldberg, D. E., Deb, K., & Clark, J. H. (1992). Genetic algorithms, noise, and the sizing of

populations. Complex Systems, 6 , 333–362.

Goldberg, D. E., & Richardson, J. (1987). Genetic algorithms with sharing for multimodal func-

tion optimization. Proceedings of the International Conference on Genetic Algorithms (ICGA-

87), 41–49.

Goldberg, D. E., & Rudnick, M. (1991). Genetic algorithms and the variance of fitness. Complex

Systems, 5 (3), 265–278. Also IlliGAL Report No. 91001.

Goldberg, D. E., Sastry, K., & Latoza, T. (2001). On the supply of building blocks. Proceedings

of the Genetic and Evolutionary Computation Conference (GECCO-2001), 336–342. Also

IlliGAL Report No. 2001015.

Goldberg, D. E., & Segrest, P. (1987). Finite Markov chain analysis of genetic algorithms. Pro-

ceedings of the International Conference on Genetic Algorithms (ICGA-87), 1–8.

Goldberg, D. E., & Voessner, S. (1999). Optimizing global-local search hybrids. Proceedings of

the Genetic and Evolutionary Computation Conference (GECCO-99), 220–228. Also IlliGAL

Report No. 99001.

Gonzalez, C., Lozano, J., & Larranaga, P. (2001). Analyzing the PBIL algorithm by means of

discrete dynamical systems. Complex Systems, 4 (12), 465–479.

Gorges-Schleuter, M. (1989). ASPARAGOS: An asynchronous parallel genetic optimization strat-

egy. Proceedings of the International Conference on Genetic Algorithms (ICGA-89), 422–428.

Gottlieb, J., Marchiori, E., & Rossi, C. (2002). Evolutionary algorithms for the satisfiability

problem. Evolutionary Computation, 10 (1), 35–50.

211

Grosso, P. B. (1985). Computer simulations of genetic adaptation: Parallel subcomponent inter-

action in a multilocus model. Unpublished doctoral dissertation, The University of Michigan.

(University Microfilms No. 8520908).

Grünwald, P. (1998). The minimum description length principle and reasoning under uncertainty.

Doctoral dissertation, University of Amsterdam, Amsterdam, Netherlands.

Handley, S. (1994). On the use of a directed acyclic graph to represent a population of computer

programs. Proceedings of the International Conference on Evolutionary Computation (ICEC-

94), 154–159.

Hansen, N., Ostermeier, A., & Gawelczyk, A. (1995). On the adaptation of arbitrary normal

mutation distributions in evolution strategies: The generating set adaptation. Proceedings of

the International Conference on Genetic Algorithms (ICGA-95), 57–64.

Harik, G. (1999). Linkage learning via probabilistic modeling in the ECGA (IlliGAL Report No.

99010). Urbana, IL: University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms

Laboratory.

Harik, G., Cantú-Paz, E., Goldberg, D. E., & Miller, B. L. (1999). The gambler’s ruin problem,

genetic algorithms, and the sizing of populations. Evolutionary Computation, 7 (3), 231–253.

Harik, G., & Lobo, F. (1999). A parameter-less genetic algorithm. Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO-99), I , 258–265.

Harik, G. R. (1994). Finding multiple solutions in problems of bounded difficulty (IlliGAL Report

No. 94002). Urbana, IL: University of Illinois at Urbana-Champaign.

Harik, G. R. (1997). Learning gene linkage to efficiently solve problems of bounded difficulty using

genetic algorithms. Doctoral dissertation, University of Michigan, Ann Arbor. Also IlliGAL

Report No. 97005.

Harik, G. R., Cantú-Paz, E., Goldberg, D. E., & Miller, B. L. (1997). The gambler’s ruin problem,

genetic algorithms, and the sizing of populations. Proceedings of the International Conference

on Evolutionary Computation (ICEC-97), 7–12. Also IlliGAL Report No. 96004.

212

Harik, G. R., Lobo, F. G., & Goldberg, D. E. (1997). The compact genetic algorithm (IlliGAL

Report No. 97006). Urbana, IL: University of Illinois at Urbana-Champaign, Illinois Genetic

Algorithms Laboratory.

Heckerman, D., Geiger, D., & Chickering, D. M. (1994). Learning Bayesian networks: The

combination of knowledge and statistical data (Technical Report MSR-TR-94-09). Redmond,

WA: Microsoft Research.

Henrion, M. (1988). Propagation of uncertainty in Bayesian networks by logic sampling. In

Lemmer, J. F., & Kanal, L. N. (Eds.), Uncertainty in Artificial Intelligence (pp. 149–163).

Amsterdam, London, New York: Elsevier.

Höhfeld, M., & Rudolph, G. (1997). Towards a theory of population-based incremental learning.

Proceedings of the International Conference on Evolutionary Computation (ICEC-97), 1–6.

Holland, J. (1973). Genetic algorithms and the optimal allocation of trials. SIAM Journal of

Computing , 2 (2), 88–105.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University

of Michigan Press.

Holland, J. H. (2000). Building blocks, cohort genetic algorithms, and hyperplane-defined func-

tions. Evolutionary Computation, 8 (4), 373–391.

Hollstein, R. B. (1971). Artificial genetic adaptation in computer control systems. Doctoral dis-

sertation, University of Michigan. (University Microfilms No. 71-23,773).

Horn, J. (1993). Finite Markov chain analysis of genetic algorithms with niching. Proceedings

of the International Conference on Genetic Algorithms (ICGA-93), 110–117. Also IlliGAL

Report No. 93002.

Horn, J., & Nafpliotis, N. (1993, July). Multiobjective optimization using the niched pareto ge-

netic algorithm (IlliGAL Report No. 93005). Urbana, IL: University of Illinois at Urbana-

Champaign.

Howard, R. A., & Matheson, J. E. (1981). Influence diagrams. In Howard, R. A., & Matheson,

J. E. (Eds.), Readings on the principles and applications of decision analysis, Volume II (pp.

721–762). Menlo Park, CA: Strategic Decisions Group.

213

Kardar, M., & Saul, L. (1994). The 2D +/−J Ising spin glass: Exact partition functions in

polynomial time. Nucl. Phys. B , 432 , 641–667.

Kargupta, H. (1995). SEARCH, polynomial complexity, and the fast messy genetic algorithm.

Doctoral dissertation, University of Illinois at Urbana-Champaign, Urbana, IL.

Khan, N. (2002). Multiobjective Bayesian optimization algorithm (Technical Report). Urbana,

IL: University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory. Un-

published technical report.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.

Science, 220 , 671–680.

Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural

selection. Cambridge, MA: The MIT Press.

Koza, J. R. (1994). Genetic programming II: Automatic discovery of reusable programs. Cam-

bridge, MA: Massachusetts Institute of Technology.

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Annals of Math. Stats., 22 ,

79–86.

Kvasnicka, V., Pelikan, M., & Pospichal, J. (1996). Hill climbing with learning (An abstraction

of genetic algorithm). Neural Network World , 6 , 773–796.

Larranaga, P., Etxeberria, R., Lozano, J., & Pena, J. (2000a). Combinatorial optimization by

learning and simulation of bayesian networks. Proceedings of the Uncertainty in Artificial

Intelligence (UAI-2000), 343–352.

Larranaga, P., Etxeberria, R., Lozano, J. A., & Pena, J. M. (2000b). Optimization in continu-

ous domains by learning and simulation of Gaussian networks. Workshop Proceedings of the

Genetic and Evolutionary Computation Conference (GECCO-2000), 201–204.

Larranaga, P., & Lozano, J. A. (Eds.) (2002). Estimation of distribution algorithms: A new tool

for evolutionary computation. Boston, MA: Kluwer.

214

Li, C. M., & Anbulagan (1997). Heuristics based on unit propagation for satisfiability problems.

Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI-97), 366–

371.

Lobo, F. G., Goldberg, D. E., & Pelikan, M. (2000). Time complexity of genetic algorithms

on exponentially scaled problems. Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO-2000), 151–158.

Loebl, M. (2000). On the dimer problem in 3-dimensional lattices (Technical Report). Prague,

Czech Republic: Department of Applied Mathematics, Charles University.

Mahfoud, S. W. (1992). Crowding and preselection revisited. Parallel Problem Solving from

Nature, 27–36.

Marascuilo, L. A., & McSweeney, M. (1977). Nonparametric and distribution-free methods for

the social sciences. CA: Brooks/Cole Publishing Company.

Mauldin, M. L. (1984). Maintaining diversity in genetic search. In Brachman, R. J. (Ed.), Pro-

ceedings of the National Conference on Artificial Intelligence (pp. 247–250). Austin, TX:

William Kaufmann.

Mengshoel, O. J., & Goldberg, D. E. (1999). Probabilistic crowding: Deterministic crowding

with probabilisitic replacement. Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO-99), I , 409–416.

Miller, B. L., & Goldberg, D. E. (1996a). Genetic algorithms, selection schemes, and the varying

effects of noise. Evolutionary Computation, 4 (2), 113–131.

Miller, B. L., & Goldberg, D. E. (1996b). Optimal sampling for genetic algorithms. Intelligent

Engineering Systems through Artificial Neural Networks, 6 , 291–297.

Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge, MA: MIT Press.

Mitchell, M., Forrest, S., & Holland, J. H. (1992). The royal road for genetic algorithms: Fitness

landscapes and GA performance. Toward a Practice of Autonomous Systems: Proceedings of

the First European Conference on Artificial Life, 245–254.

215

Monien, B., & Sudborough, I. H. (1988). Min cut is np-complete for edge weighted trees. Theo-

retical Computer Science, 58 (1–3), 209–229.

Mühlenbein, H. (1991). Evolution in time and space-The parallel genetic algorithm. Foundations

of Genetic Algorithms, 316–337.

Mühlenbein, H. (1992). How genetic algorithms really work: I.Mutation and Hillclimbing. Parallel

Problem Solving from Nature, 15–25.

Mühlenbein, H. (1997). The equation for response to selection and its use for prediction. Evolu-

tionary Computation, 5 (3), 303–346.

Mühlenbein, H., & Mahnig, T. (1998). Convergence theory and applications of the factorized

distribution algorithm. Journal of Computing and Information Technology , 7 (1), 19–32.

Mühlenbein, H., & Mahnig, T. (1999). FDA – A scalable evolutionary algorithm for the opti-

mization of additively decomposed functions. Evolutionary Computation, 7 (4), 353–376.

Mühlenbein, H., Mahnig, T., & Rodriguez, A. O. (1999). Schemata, distributions and graphical

models in evolutionary optimization. Journal of Heuristics, 5 , 215–247.

Mühlenbein, H., & Paaß, G. (1996). From recombination of genes to the estimation of distribu-

tions I. Binary parameters. Parallel Problem Solving from Nature, 178–187.

Mühlenbein, H., & Schlierkamp-Voosen, D. (1993). Predictive models for the breeder genetic

algorithm: I. Continuous parameter optimization. Evolutionary Computation, 1 (1), 25–49.

Naudts, B., & Naudts, J. (1998). The effect of spin-flip symmetry on the performance of the

simple GA. Parallel Problem Solving from Nature, 67–76.

Ocenasek, J., & Schwarz, J. (2000). The parallel Bayesian optimization algorithm. In Proceedings

of the European Symposium on Computational Inteligence (pp. 61–67). Physica-Verlag.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference.

San Mateo, CA: Morgan Kaufmann.

Pelikan, M., & Goldberg, D. E. (2000a). Genetic algorithms, clustering, and the breaking of

symmetry. Parallel Problem Solving from Nature, 385–394. Also IlliGAL Report No. 2000013.

216

Pelikan, M., & Goldberg, D. E. (2000b). Hierarchical problem solving by the Bayesian opti-

mization algorithm. Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO-2000), 275–282. Also IlliGAL Report No. 2000002.

Pelikan, M., & Goldberg, D. E. (2001). Escaping hierarchical traps with competent genetic

algorithms. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-

2001), 511–518. Also IlliGAL Report No. 2000020.

Pelikan, M., Goldberg, D. E., & Cantú-Paz, E. (1998). Linkage problem, distribution estimation,

and Bayesian networks (IlliGAL Report No. 98013). Urbana, IL: University of Illinois at

Urbana-Champaign, Illinois Genetic Algorithms Laboratory.

Pelikan, M., Goldberg, D. E., & Cantú-Paz, E. (1999). BOA: The Bayesian optimization algo-

rithm. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), I ,

525–532. Also IlliGAL Report No. 99003.

Pelikan, M., Goldberg, D. E., & Cantú-Paz, E. (2000a). Bayesian optimization algorithm, popu-

lation sizing, and time to convergence. Proceedings of the Genetic and Evolutionary Compu-

tation Conference (GECCO-2000), 275–282. Also IlliGAL Report No. 2000001.

Pelikan, M., Goldberg, D. E., & Cantú-Paz, E. (2000b). Linkage problem, distribution estimation,

and Bayesian networks. Evolutionary Computation, 8 (3), 311–341. Also IlliGAL Report No.

98013.

Pelikan, M., Goldberg, D. E., & Lobo, F. (2002). A survey of optimization by building and

using probabilistic models. Computational Optimization and Applications, 21 (1), 5–20. Also

IlliGAL Report No. 99018.

Pelikan, M., Goldberg, D. E., & Sastry, K. (2001). Bayesian optimization algorithm, decision

graphs, and Occam’s razor. Proceedings of the Genetic and Evolutionary Computation Con-

ference (GECCO-2001), 519–526.

Pelikan, M., Goldberg, D. E., & Tsutsui, S. (2001). Combining the strengths of the Bayesian opti-

mization algorithm and adaptive evolution strategies (IlliGAL Report No. 2001023). Urbana,

IL: University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory.

217

Pelikan, M., & Mühlenbein, H. (1999). The bivariate marginal distribution algorithm. Advances

in Soft Computing - Engineering Design and Manufacturing , 521–535.

Pelikan, M., Sastry, K., & Goldberg, D. E. (2001). Evolutionary algorithms + graphical models

= scalable black-box optimization (IlliGAL Report No. 2001029). Urbana, IL: Illinois Genetic

Algorithms Laboratory, University of Illinois at Urbana-Champaign.

Perry, Z. A. (1984). Experimental study of speciation in ecological niche theory using genetic

algorithms. Dissertation Abstracts International , 45 (12), 3870B. (University Microfilms No.

8502912).

Poli, R., Langdon, W., & O’Reilly, U.-M. (1998). Analysis of schema variance and short term

extinction likelihoods. Proceedings of the Genetic Programming Conference (GP-98), 284–

292.

Prim, R. (1957). Shortest connection networks and some generalizations. Bell Systems Technical

Journal , 36 , 1389–1401.

Rana, S., & Whitley, D. L. (1998). Genetic algorithm behavior in the MAXSAT domain. Parallel

Problem Solving from Nature, 785–794.

Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien

der biologischen Evolution. Stuttgart: Frommann-Holzboog.

Rechenberg, I. (1994). Evolutionsstrategie ’94. Stuttgart: Frommann-Holzboog Verlag.

Reeves, C. (1993). Using genetic algorithms with small populations. Proceedings of the Interna-

tional Conference on Genetic Algorithms (ICGA-93), 92–99.

Rissanen, J. J. (1978). Modelling by shortest data description. Automatica, 14 , 465–471.

Rissanen, J. J. (1989). Stochastic complexity in statistical inquiry. Singapore: World Scientific

Publishing Co.

Rissanen, J. J. (1996). Fisher information and stochastic complexity. IEEE Transactions on

Information Theory , 42 (1), 40–47.

218

Rothlauf, F. (2001). Towards a theory of representations for genetic and evolutionary algorithms:

Development of basic concepts and their application to binary and tree representations. Doc-

toral dissertation, University of Bayreuth, Beyreuth, Germany.

Rothlauf, F., Goldberg, D. E., & Heinzl, A. (2000). Bad codings and the utility of well-designed

genetic algorithms (IlliGAL Report No. 200007). Urbana, IL: University of Illinois at Urbana-

Champaign, Illinois Genetic Algorithms Laboratory.

Rudlof, S., & Köppen, M. (1996). Stochastic hill climbing with learning by vectors of normal

distributions. Nagoya, Japan.

Rudnick, M. W. (1992). Genetic algorithms and fitness variance with application to automated

design of artificial neural networks. Doctoral dissertation, Oregon Graduate Institute of Sci-

ence & Technology, Beaverton, OR.

Salustowicz, R., & Schmidhuber, J. (1998). H-PIPE: Facilitating hierarchical program evolution

through skip nodes (Technical Report IDSIA-08-98). Lugano, Switzerland: Instituto Dalle

Molle di Studi sull’ Intelligenza Artificiale (IDSIA).

Salustowicz, R. P., & Schmidhuber, J. (1997a). Probabilistic incremental program evolution.

Evolutionary Computation, 5 (2), 123–141.

Salustowicz, R. P., & Schmidhuber, J. (1997b). Probabilistic incremental program evolution:

Stochastic search through program space. Proceedings of the European Conference of Machine

Learning (ECML-97), 1224 , 213–220.

Sastry, K. (2001a). Efficient atomic cluster optimization using a hybrid extended compact genetic

algorithm with seeded population (IlliGAL Report No. 2001018). Urbana, IL: University of

Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory.

Sastry, K. (2001b). Evaluation-relaxation schemes for genetic and evolutionary algorithms. Mas-

ter’s thesis, University of Illinois at Urbana-Champaign, Department of General Engineering,

Urbana, IL. Also IlliGAL Report No. 2002004.

Sastry, K., & Goldberg, D. E. (2000). On extended compact genetic algorithm (IlliGAL Report No.

2000026). Urbana, IL: University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms

Laboratory.

219

Sastry, K., Goldberg, D. E., & Pelikan, M. (2001). Don’t evaluate, inherit. Proceedings of the

Genetic and Evolutionary Computation Conference (GECCO-2001), 551–558.

Schaffer, J. D. (1984). Some experiments in machine learning using vector evaluated genetic

algorithms. Doctoral dissertation, Vanderbilt University, Nashville, Tennessee. (University

Microfilms No. 85-22492).

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6 , 461–464.

Schwarz, J., & Ocenasek, J. (1999). Experimental study: Hypergraph partitioning based on the

simple and advanced algorithms BMDA and BOA. Proceedings of the International Confer-

ence on Soft Computing , 124–130.

Schwarz, J., & Ocenasek, J. (2000). A problem-knowledge based evolutionary algorithm KBOA

for hypergraph partitioning. In Proceedings of the Fourth Joint Conference on Knowledge-

Based Software Engineering (pp. 51–58). Brno, Czech Republic: IO Press.

Schwefel, H.-P. (1977). Numerische Optimierung von Computer–Modellen mittels der Evolution-

sstrategie, Volume 26 of Interdisciplinary Systems Research. Basle, Switzerland: Birkhäuser.

Sebag, M., & Ducoulombier, A. (1998). Extending population-based incremental learning to

continuous search spaces. Parallel Problem Solving from Nature, 418–427.

Selman, B., Levesque, H. J., & Mitchell, D. (1992). A new method for solving hard satisfiability

problems. Proceedings of the National Conference on Artificial Intelligence (AAAI-92), 440–

446.

Servet, I., Trave-Massuyes, L., & Stern, D. (1997). Telephone network traffic overloading diag-

nosis and evolutionary computation techniques. Proceedings of the European Conference on

Artificial Evolution (AE-97), 137–144.

Simon, H. A. (1968). The sciences of the artificial. Cambridge, MA: The MIT Press.

Sinha, A., & Goldberg, D. E. (2001). Verification and extension of the theory of global-local

hybrids. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-

2001), 591–597. Also IlliGAL Report No. 2001010.

220

Sinha, A., & Goldberg, D. E. (2002). A survey of hybrid genetic and evolutionary algorithms

(IlliGAL Report No. 2002XXX). Urbana, IL: University of Illinois at Urbana-Champaign,

Illinois Genetic Algorithms Laboratory.

Srivastava, R., & Goldberg, D. E. (2001). Verification of the theory of genetic and evolu-

tionary continuation. Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO-2001), 551–558. Also IlliGAL Report No. 2001007.

Thierens, D. (1995). Analysis and design of genetic algorithms. Doctoral dissertation, Katholieke

Universiteit Leuven, Leuven, Belgium.

Thierens, D., & Bosman, P. A. N. (2001). Multi-objective mixture-based iterated density esti-

mation evolutionary algorithms. Morgan Kaufmann, 663–670.

Thierens, D., & Goldberg, D. (1994). Convergence models of genetic algorithm selection schemes.

Parallel Problem Solving from Nature, 116–121.

Thierens, D., & Goldberg, D. E. (1993). Mixing in genetic algorithms. Proceedings of the Inter-

national Conference on Genetic Algorithms (ICGA-93), 38–45.

Thierens, D., Goldberg, D. E., & Pereira, A. G. (1998). Domino convergence, drift, and the

temporal-salience structure of problems. Proceedings of the International Conference on Evo-

lutionary Computation (ICEC-98), 535–540.

Tsutsui, S., Pelikan, M., & Goldberg, D. E. (2001). Evolutionary algorithm using marginal his-

togram models in continuous domain. Workshop Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO-2001), 230–233.

Van Hoyweghen, C. (2001). Detecting spin-flip symmetry in optimization problems. In Kallel,

L., Naudts, B., & Rogers, A. (Eds.), Theoretical Aspects of Evolutionary Computing (pp.

423–437). Berlin: Springer.

Van Hoyweghen, C., Goldberg, D. E., & Naudts, B. (2001). From TwoMax to the Ising model:

Easy and hard symmetrical problems (IlliGAL Report No. 2001030). Urbana, IL: University

of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory.

Watson, R. A., Hornby, G. S., & Pollack, J. B. (1998). Modeling building-block interdependency.

Parallel Problem Solving from Nature, 97–106.

221

Wright, S. (1968). Evolution and the genetics of populations: A treatise. University of Chicago

Press.

222

Index

ancestral ordering, see sampling Bayesian net-
works, ancestral ordering

Bayesian networks, 52
description, 52
example, 53
greedy algorithm for network construction

using decision graphs
pseudo-code, 153

learning, see learning Bayesian networks
local structures, see local structures
parameters, 52
sampling, see sampling Bayesian networks
semantics in BOA, 53
structure, 52

Bayesian optimization algorithm, 2, 37
block probabilities after tournament, 88
critical population size, 87, 88
description, 51
population sizing, see population sizing,

BOA
summary, 108

pseudo-code, 51
scalability, 114
time to convergence, see time to conver-

gence, BOA
BIC, see learning Bayesian networks, scoring

metric, Bayesian information criterion
bivariate marginal distribution algorithm, 35
black-box optimization, 9
block probabilities after tournament, 88
BMDA, see bivariate marginal distribution al-

gorithm
BOA, see Bayesian optimization algorithm
building blocks, 18

context, 19
nonlinearities, 19

cGA, see compact genetic algorithm
compact genetic algorithm, 32

composed trap fitness function, see fitness func-
tion, composed trap

crossover
one-point, 11
population-wise building-block, 28
population-wise uniform, 13, 26
probabilistic building-block, 29
probabilistic uniform, 15, 26
uniform, 11

distribution
adaptive intervals, 44
factorized, 36
joint, 52
marginal product model, 36
mixture of normal distributions, 41
univariate marginal, 27

ECGA, see extended compact genetic algo-
rithm

EDA, see estimation of distribution algorithm
estimation of distribution algorithm, 26
extended compact genetic algorithm, 36

factorized distribution algorithm, 36
learning FDA, 38

FDA, see factorized distribution algorithm
fitness function, 10

composed trap, 27
hierarchical trap, 134

fhtrap1, 135
fhtrap2, 135, 136
components, 135

HIFF, 133
onemax, 13
royal road, 131
tobacco road, 126
trap of order 5, 17
trap of order k, 28

GA, see genetic algorithm

223

genetic algorithm, 8, 10
description, 10
Goldberg’s seven GA-success conditions,

20
population sizing, see population sizing,

genetic algorithm
representation, 10
selectorecombinative, 11
terminology, 12
time to convergence, see time to conver-

gence, genetic algorithm
genetic and evolutionary computation, 1
genetic drift, 77
genetic programming, 46
GSAT, 181

H-PIPE, see probabilistic incremental program
evolution, hierarchical

hierarchical BOA, 161
pseudo-code, 162

hierarchical problem solving
chunking, 141

explicit, 142
implicit, 142
two tasks, 141

preservation of alternatives, 154
three keys to hierarchy success

chunking, 124
preservation of alternatives, 125
proper decomposition, 124

hierarchical system
human-body example, 122
program-code example, 122
Simon’s definition, 122
university example, 122

hierarchical trap, see fitness function, hierar-
chical trap

IDEA, see iterated density estimation algo-
rithm

Ising spin glass, see spin glass
iterated density estimation algorithm, 26

learning Bayesian networks, 55
elementary operations, 59
greedy algorithm for network construction,

59
pseudo-code, 60

learning the parameters, 55
learning the structure, 55
network construction, 59
scoring metric, 56

Bayesian information criterion (BIC), 58
Bayesian metrics, 56
BD metric, 57
K2 metric, 57
minimum description length, 58

search procedure, 59
LFDA, see factorized distribution algorithm,

learning FDA
linkage learning, 21
local structures, 143

decision graphs, 148
Bayesian-Dirichlet metric, 150
BIC, 151
example, 148
learning BNs with DGs, 152
operators, 151

decision trees, 146
example, 147

default tables, 144
example, 144, 145

marginal product model, see distribution, marginal
product model

maximum satisfiability, 179
results of hBOA+GSAT on combined-graph

coloring, 185
results of hBOA+GSAT on random 3-CNFs,

184
specialized solvers, 181
tested instances, 182

MAXSAT, see maximum satisfiability
MIMIC, see mutual-information-maximizing

input clustering algorithm
mutation

bit-flip, 11
mutual-information-maximizing input cluster-

ing algorithm, 33

niching, 154

optimization problem, 9

PBIL, see population-based incremental learn-
ing

224

PIPE, see probabilistic incremental program
evolution

PMBGA, see probabilistic model-building ge-
netic algorithm

pseudo-code, 25
population sizing

BOA, 80
four factors, 80
summary, 108

genetic algorithm, 74
background, 74
decision making, 75
gambler’s ruin model, 77
genetic drift, 77
initial supply of BBs, 74
linear model, 76

population-based incremental learning, 31
probabilistic incremental program evolution,

47
hierarchical, 47

probabilistic model-building genetic algorithm,
24

computer programs, 46
description, 25
discrete, 31
general procedure, 24, 25
real-valued, 39
with adaptive discretization, 45

sampling Bayesian networks, 61
ancestral ordering, 61

pseudo-code, 62
forward simulation, 61

pseudo-code, 62
Satz, 181
selection, 10

tournament, 11
truncation, 11

SHCLVND, see stochastic hill climbing with
learning by vectors of normal distri-
butions

spin glass, 172
results in 2D with hBOA, 174
results in 2D with hBOA + local search,

177
results in 3D with hBOA + local search,

178

specialized solvers, 176
stochastic hill climbing with learning by vec-

tors of normal distributions, 40

time to convergence
background, 108
BOA, 109

exponential scaling, 111
uniform scaling, 109

genetic algorithm
background, 108

trap of order 5, see fitness function, trap of
order 5

trap of order k, see fitness function, trap of
order k

UMDA, see univariate marginal distribution
algorithm

univariate marginal distribution algorithm, 33

WalkSAT, 181

225

Vita

Martin Pelikan was born in Martin, Slovakia on December 8, 1974. He graduated from the Come-

nius University in Bratislava, Slovakia in 1998 with a degree in Computer Science. Prior to arriving

in Illinois to pursue graduate study in Computer Science, he visited several laboratories as a vis-

iting researcher, including the Department of Mathematics of the Slovak Technical University in

Bratislava (Slovakia), the Adaptive Systems Group at the German National Center for Information

Technology in Sankt Augustin (Germany), and the Illinois Genetic Algorithms Laboratory at the

University of Illinois at Urbana-Champaign. Following the completion of his Ph.D., Pelikan will

engage in postdoctoral research.

226

